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Introduction

/ o o o o o o c o ¢ o
** Variable selection is crucial for achieving model simplicity by reducing the number of
items included in the analysis, helping to create a more interpretable and efficient

model (Jacobucci et al., 2016 ;Wille, 1996).

+* Both FA and Network Analysis can incorporate regularization techniques (e.g. Lasso)
to aid in simplifying models by penalizing less important parameters, thereby

enhancing model estimation and preventing potential overﬁtting.

\/ . . . . . .
*%* How regularized factor and network analysis perform in terms of variable selection in
instruments developed through the factor analytic framework, particularly across

unidimensional and multidimensional structures, remains understudied.
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Background information

Regularized Factor Analysis Models:

Factor analysis models seek to uncover latent structures that explain relationships
among observed variables. Regularization is a technique integrated into the estimation process
to enhance the model by including a penalty term with the maximum likelihood estimation

objective function.

Fpg = Fyp +v * P(),
Various penalty terms P() are available to achieve regularization.
. YPiasso(8) = v ll6ll; = v X[6] (Tibshirani, 1996)

" YPpnet(0) =y * [(1 — a)|I6]l; + a*|6]l,] (Zou & Hastie, 2005)
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Background information s & O

Regularized Psychometric Network Models:
Psychological networks consist of nodes representing observed variables,

connected by edges representing statistical relationships (Epskamp et al., 2017) .

®  Pruning: Shrink less important connections to zero, which helps in focusing on the most

influential relationships. (Han et al., 2015)

Filasso(®) = —logdet (@) + trace(S0O) + AZi:tjl@ijl (Friedman et al., 2008)

AERA 2025



Purpose of study

* Aim 1: Compare the efficacy of variable selection in regularized factor
analysis vs. network analysis under single and multidimensional

contexts.

* Aim 2: Explore how regularized network models can inform variable

selection in data generated with latent structures.
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Study design

Data were generated in R 4.3.3 with the /avaan package (Rosseel, 2012).
Population model:
one-factor model with 24 normally distributed items (0.7 /0.2, 0.1, O) .
three-factor model with 8 items for each factor (0.7 /0.2, 0.1, 0).
three-factor model with 8 items for each factor (one cross loading each factor )
Sample size : 200, 500, 1000

Replications: 100
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Data analysis

Data were analyzed in R 4.3.3 with the following packages (Rosseel, 2012) .

Network Analysis Method:
Prune in ‘psychonetrics’: T =0.01
Glasso in ‘bootnet’: y= 0.5
Factor Analysis Method:
Lasso and Elastic net in ‘regsem’, ‘penfa’, and ‘Islx’ packages
lambda.start= 0.001, jump = 0.01, n.lambda = 50
Elastic net alpha = 0.5
Threshold = 0.1 (zhang, 2021)
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R package

T e

- Network analysis

Lasso ElasticNet psychonetrics prune

regsem J J bootnet glasso
panfa J -
Lslx J v
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Results (one factor model) o
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Results (one factor model)
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Results (one factor model)
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Results (three factor model)

Non-zero items = 21
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Results (three factor model)

TP rate =

FP rate =

TP+FN

FP+TN

0.8

0.64

0.41

0.24

0.0q ®

% || %
f

Item Selection Rate by Magnitude

Loading = 0 Loading = 0.1 Loading = 0.2 Loading = 0.7
260 560 10I00 260 560 10I00 2C|)0 560 10|00 2(I)0 SCI)O 10|00
glasso regsem_lasso Islx_lasso == penfa_lasso
Method
prune regsem_enet Islx_enet

AERA 2025

13



Results (three factor model)
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Results (three factor model with cross-loading)

Non-zero items = 21
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Results (three factor model with cross-loading)

ltem Selection Rate by Magnitude
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Results (three factor model with cross-loading)
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Takeaway @

Conclusion :

= Factor analysis perform reliably in small samples, making them suitable for studies with limited
data. However, when sample size increase for multidimensional data, regsem and penfa may
prefer to be more conservative than glasso.

= Network methods tends to over select more noise variables (items with small loadings),
especially for larger samples. Glasso’s adaptive regularization allows it to recover more
variables as data grows, while fixed-threshold pruning falls behind.

« Network methods struggle to detect strong loadings in unidimensional models due to high
factor correlation but achieve better performance in multidimensional models.

Future direction :

= Different types of model misspecification or item characteristics
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Thank you

Jiaying Chen jc168@uark.edu
Xinya Liang xlI014@uark.edu
Jihong Zhang jzhang@uark.edu
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