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This study proposed Gibbs sampling algorithms for variable selection in a latent
regression model under a unidimensional two-parameter logistic item response the-
ory model. Three types of shrinkage priors were employed to obtain shrinkage esti-
mates: double-exponential (i.e., Laplace), horseshoe, and horseshoe+ priors. These
shrinkage priors were compared to a uniform prior case in both simulation and
real data analysis. The simulation study revealed that two types of horseshoe priors
had a smaller root mean square errors and shorter 95% credible interval lengths
than double-exponential or uniform priors. In addition, the horseshoe+ prior was
slightly more stable than the horseshoe prior. The real data example successfully
proved the utility of horseshoe and horseshoe+ priors in selecting effective predic-
tive covariates for math achievement.

Introduction

One major interest in educational and psychological research is the exploration
of factors that can explain latent psychological traits. In various educational con-
texts, such targeted latent traits are seen as indicators of academic proficiency, such
as strong mathematical or linguistic abilities. Unidimensional item response the-
ory models (IRT models; Embretson & Reise, 2000) have been employed to es-
timate students’ academic proficiency in the Programme for International Student
Assessment (PISA; OECD, 2019) or Trends in International Mathematics and Sci-
ence Study (TIMMS; Mullis et al., 2020). In addition, latent proficiencies have been
cross-sectionally compared among countries, with their growth tracked over time.
Furthermore, students who participate in the educational assessments are usually
asked various additional questions, such as their learning attitudes, habit of study,
and background information in order to assess which factors influence academic pro-
ficiencies. Statistical models explaining latent proficiency with covariates are called
latent regression models (von Davier & Sinharay, 2007, 2010) or explanatory item
response models (De Boeck & Wilson, 2004). In this study, we use the term “la-
tent regression models” rather than “explanatory item response models” hereafter. In
short, latent regression models are regression models with a latent dependent vari-
able.

The questionnaire for students in PISA or TIMMS has a lot of items (von Davier &
Sinharay, 2010) from different aspects, but it is not obvious which variable should be
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included in the model before the data analysis. This is known as the variable selection
problem (George, 2000). Usually, researchers choose covariates based on their re-
search interests and theories. However, if important covariates are dropped from the
data analysis, this causes the so-called omission variables problem, which results in
biased parameter estimates. If too many variables are included, the regression model
can be overfitted, and the generalization error becomes larger. This means that the
prediction based on the estimated model becomes meaningless for the purpose of
predicting new data. Moreover, the number of covariates is also related to the bias-
variance trade-off (Bishop, 2006, p. 147; Jacobucci et al., 2019), which indicates that
more complex and flexible models have smaller bias but larger variance, while sim-
pler models show larger bias but smaller variance. Furthermore, a dependent variable
in latent regression models is latent proficiency. Re-analyzing estimated latent pro-
ficiency scores can lead to biased estimates of regression coefficients (Grice, 2001).
Therefore, statistical estimation methods that can simultaneously estimate latent pro-
ficiency and select covariates that have a large effect on the dependent variable are
necessary for latent regression models.

In this study, Bayesian variable selection methods based on the Bayesian lasso
(Park & Casella, 2008) and horseshoe shrinkage priors (Carvalho et al., 2009, 2010)
were developed to measure data with a set of predictive covariates. We also devel-
oped Gibbs sampling algorithms to sample all parameters and latent variables from
fully conditional posteriors. Thus, the sampling strategy is more efficient than the
rejection sampling type Markov chain Monte Carlo methods (MCMC; Brooks et al.,
2011). Another Bayesian way to select an appropriate variable is preparing a possi-
ble model set and assigning prior probabilities for each model (Ray & Szabó, 2021).
This allow us to calculate posterior probability of each model, and it can be used
for model selection. Moreover, information-criteria-based model selection is pos-
sible (Zhang et al., 2019). Bayesian method requires priors, which are sometimes
determined subjectively (Ames & Smith, 2018), to get posterior. Shrinkage priors
reflect the assumption that most coefficients are close to zero and provide the un-
certainty of parameter estimates as posterior credible intervals. These credible inter-
vals can be employed to select the coefficients that should be included (e.g., Li and
Lin, 2010, p. 157; van Erp et al., 2019). In addition, Bayesian shrinkage estimation
methods generally do not require tuning hyperparameters. The hyperparameter tun-
ing is required for maximum likelihood (ML)-based regularization methods (lasso;
Tibshiranit, 1996; elastic net; Zou & Hastie, 2005), which are often employed in
psychometric research (Helwig, 2017; Jacobucci et al., 2019; McNeish, 2015). ML-
based regularization methods are employed for variable selection and dealing with
differential item functioning (DIF) in IRT study (Lee, 2020). The proposed Bayesian
estimation method can be easily applied to real-life data analysis scenarios without
complicated settings.

Bayesian variable selection methods have been actively studied in the field of
statistical science. In a review, van Erp et al. (2019) summarized various shrink-
age priors in a regression model with observed values and reported that regularized
horseshoe and hyper lasso priors showed better performance in terms of the pre-
diction mean squared error. However, van Erp et al. (2019) were limited to regular
multiple linear regression models. Meanwhile, Culpepper and Park (2017) devel-
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Yamaguchi and Zhang

oped a Bayesian estimation method for multiple latent variable regression with a
generalized asymmetric Laplace prior distribution. They employed a normal-ogive
IRT model rather than a logistic IRT model, which required them to tune hyperpa-
rameters as the ML-based regularization method (Culpepper & Park, 2017, p. 603),
even though their method is Bayesian. Therefore, multiple MCMC runs were ap-
plied to cross-validation samples to select appropriate hyper parameters controlling
the strength of shrinkage, which minimizes the cross-validation error. This is usu-
ally very time consuming, especially in a Bayesian estimation setting when there is a
large sample size. For example, if there are ten divided samples, the MCMC proce-
dures are run ten times for each candidate of hyper parameters. This decreases utility
of their method. Feng et al. (2017) developed a Bayesian (adaptive) lasso for a gen-
eralized latent variable model that could deal with continuous, ordinal, and nominal
variables. Their method assumes a classical Laplace prior, which is also known as
double-exponential prior, for the regression coefficients among latent proficiencies,
where the prior is not theoretically appropriate. The horseshoe prior has a property
of variable selection optimality (Bhadra et al., 2017) but a double-exponential prior
does not. Specifically, the double-exponential prior is less robust as variable selec-
tion than the horseshoe prior. In summary, there is still a lack of effective Bayesian
estimation methods with theoretically appropriate shrinkage priors (horseshoe pri-
ors) for latent regression models whose measurement model is logistic IRT models
without hyperparameter tuning. We will review the theoretical aspects of shrinkage
priors later.

To solve previously mentioned problem, the objective of this study is to develop
effective Gibbs sampling methods with three types of shrinkage priors’ settings:
double-exponential (i.e., Laplace), horseshoe, and horseshoe+ priors for a latent
variable regression situation in which the measurement model is a two-parameter
logistic (2PL) IRT model. The novelty of this study lies in employing theoretically
preferable horseshoes shrinkage priors that have not been employed for latent regres-
sion models. The contributions of this study are (1) enabling concurrent estimation
of latent traits with a logistic item response model and predictive variable selection
in a Bayesian manner, (2) providing Gibbs sampling algorithms that can not only
sample the regression coefficient but also all parameters in the 2PL IRT model, and
(3) comparing both simulation and real data situations to provide evidence of which
prior setting is more appropriate for sparse latent regression situations. The horse-
shoe and horseshoe+ priors employ prespecified hyper parameters but have stronger
shrinking effects than usual double-exponential priors, as seen later. For example,
the latent regression coefficients of predictive covariates have shrinkage priors with
the predetermined hyper parameters, in which no tuning is required (see more details
in Sections 2.2.2 and 2.2.3). This point is attractive in time-consuming Bayesian
estimation situations in latent variable models because the priors can skip multiple
MCMC runs for hyperparameters selection.

The study is structured as follows. Section 2 introduces the latent variable re-
gression model and derives the conditional posteriors for several shrinkage priors.
Section 3 provides a Gibbs sampling algorithm using previously introduced condi-
tional posteriors. Sections 4 and 5 discuss the simulation study conducted to com-
pare the three shrinkage priors against a uniform prior setting as a reference. Section
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Fully Gibbs Sampling Algorithms

6 presents the application of developed methods to real data. Finally, Section 7 pro-
vides suggestions about the proposed methods and offers recommendations regard-
ing which shrinkage prior has the best performance in the latent regression situation
and discusses the benefits and limitations of the three types of Bayesian variable
selection methods.

Bayesian Variable Selection Methods for Latent Regression Models

Formulation of Latent Regression in Two-Parameter Logistic Item Response
Model

The item response is represented as yi j ∈ {0, 1}, which is a realization of a ran-
dom variable Yi j and if individual i ∈ {1, . . . , I} correctly responds to the item
j ∈ {1, . . . , J}, then yi j takes one otherwise zero. The probability of a correct re-
sponse of the 2PL IRT model is formulated with a latent proficiency variable θi ∈ R
and two item parameters, namely the discrimination parameter aj ∈ R+ and diffi-
culty parameter bj ∈ R:

P
(
yi j = 1|θi, a j, b j

) = 1

1 + exp
(−a j

(
θi − b j

)) . (1)

In the latent regression model, the θi is regressed on covariance xi =
(xi1, . . . , xik, . . . , xip)� xi = (xi1, . . . , xik, . . . , xip)� in which the number of the
covariance is p and xik ∈ R, k = 1, 2, . . . , p:

θi = μθi + εi = x�
i β + εi, (2)

where β is a p -length vector of regression coefficients written as β =
(β1, . . . , βk, . . . , βp)� and error term εi follows independently normal distribution:
εi ∼ N (0, σ2). Here, μθi = x�

i β is the conditional mean of latent proficiency of indi-
vidual i$ given covariate vector xi and regression coefficients β. This implies that the
distribution of individual latent proficiency θi is a normal distribution with mean μθi

and variance σ2. Moreover, σ2 or at least one of a j should be fixed for identifiability.
In this study, we fixed σ2 = 1.

Before constructing the Bayesian variable selection Gibbs sampling for β, we first
constructed full conditional posteriors for the parameters of 2PL based on the dis-
cussion of Jiang and Templin (2019). The prior distributions for aj and b j are normal
distributions whose means are μa j and μb j and variances are σ2

a j
and σ2

b j
:

p
(

a j |μa j , σ
2
a j

)
= N

(
μa j , σ

2
a j

)
I (a j > 0), (3)

p
(

b j |μb j , σ
2
b j

)
= N

(
μb j , σ

2
b j

)
, (4)

where I (·) is an indicator function taking one if its argument is true, otherwise zero.
To derive full conditional posteriors for 2PL IRT parameters, we need to intro-

duce an additional auxiliary variable wi j following Pólya-Gamma distribution with
parameters 1 and a j (θi − b j ) (Polson et al., 2013; Scott & Sun, 2013), expressed as

wi j ∼ PólyaGamma
(
1, a j

(
θi − b j

))
. (5)
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Yamaguchi and Zhang

Let d > 0 and c ∈ R be the parameters of the Pólya-Gamma distribution and

PólyaGamma(d, c) = 1/2π2
∞∑

l = 1

gl

(l−1/2)2+c2/(4π2 )
, gl follows a gamma distribution

with parameters d and 1, which is the probability density function of variable x hav-
ing a gamma distribution defined as f (x; a, b) = ba

�(a) xa+1 exp(−bx), where �(a) is
a gamma function. Moreover, item response yi j is converted as

ki j = yi j − 1

2
. (6)

Based on Equations 7–9 in Jiang and Templin (2019) and the local independence
assumption and exchangeability of individuals, the full conditional distribution of
item discrimination parameter aj is proportional to

p
(

a j |y j, θ, b j, k j, w j,μa j , σ
2
a j

)
∝ p

(
a j |μa j , σ

2
a j

)

exp

{
−1

2

∑
i

wi j

(
ki j

wi j
− a j

(
θi − b j

))2
}

I
(
a j > 0

)
, (7)

where y j is an I-length item response vector of item j defined as y j = (y1 j, . . . , yI j ),
θ is the Ith length latent proficiency vector (θ1, . . . , θI ), k j is a vector of ki js defined
as (k1 j, . . . , kI j ), and w j is a vector of wi js written as (w1 j, . . . , wI j ). After additional
calculation, the posterior distribution of item discrimination parameter aj becomes a
normal distribution:

p
(

a j |y j, θ, b j, k j, w j,μa j , σ
2
a j

)
= N

(
μ∗

a j
, σ2∗

a j

)
I (a j > 0), (8)

where its mean μ∗
a j

and variance σ2∗
a j

are

⎧⎪⎪⎨
⎪⎪⎩

μ∗
a j

= σ2∗
a j

(
μa j

σ2
a j

+∑
i

ki j
(
θi − b j

))
,

σ2∗
a j

=
(

1
σ2

a j

+∑
i

wi j
(
θi − b j

)2
)−1

.

(9)

The same discussion can be applied to the derivation of posterior of bj :

p
(

b j |y j, θ, a j, k j, w j,μb j , σ
2
b j

)
∝ p

(
b j |μb j , σ

2
b j

)

exp

{
−1

2

∑
i

wi j

((
ki j

wi j
+ a jb j

)
− a jθi

)2
}

, (10)

where b is a J-length item difficulty vector (b1, . . . , bJ ). Therefore, the full condi-
tional distribution of bj is a normal distribution:

p
(

b j |y j, θ, a j, k j, w j,μb j , σ
2
b j

)
= N

(
μ∗

b j
, σ2∗

b j

)
, (11)
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Fully Gibbs Sampling Algorithms

where ⎧⎪⎪⎨
⎪⎪⎩

μ∗
b j

= σ2∗
b j

(
μb j

σ2
b j

+ a j
∑

i

(
ki j − a jθiwi j

))
,

σ2∗
b j

=
(

1
σ2

b j

+ a2
j

∑
i

wi j

)−1

.

(12)

Finally, the full conditional distribution of latent proficiency parameter θi is

p
(
θi|yi, a, b, ki, wi,μθi , σ2 = 1

) ∝ p
(
θi|μθi , σ2 = 1

)
exp

{
−1

2

∑
i

wi j

((
ki j

wi j
+ a jb j

)
− a jθi

)2
}

, (13)

where yi is ith student item response vector expressed by (yi1, . . . , yiJ ), ki is a vector
defined as (ki1, . . . , kiJ ), and wi is a vector represented as (wi1, . . . , wiJ ) and this
becomes a normal distribution:

p
(
θi|yi, a, b, ki, wi,μθi , σ2 = 1

) = N
(
μ∗

θ j
, σ2∗

θ j

)
, (14)

with parameters ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ∗
θi

= σ2∗
θi

(
μθi
σ2 +∑

j
a j
(
a jb jwi j + ki j

))
,

σ2∗
θ j

=
(

1
σ2

θi

+∑
j

a2
j wi j

)−1

.

(15)

Note that μθi equals to x�
i β and σ2 is fixed to one.

Bayesian Shrinkage Priors

A family of priors that aim to lead parameter estimates toward zero is called
shrinkage priors (van Erp et al., 2019). In the Bayesian statistical method, shrinkage
priors can be seen as an analog to the regularization term in ML methods. While
various Bayesian shrinkage priors have been proposed (Bhadra et al., 2019; van
Erp et al., 2019) for various purposes, we selected three famous priors that led to
tractable Gibbs sampling algorithms: double-exponential (Laplace; Park & Casella,
2008), horseshoe (Carvalho et al., 2009, 2010), and horseshoe+ priors (Bhadra et al.,
2017).

The double-exponential prior can be viewed as a Bayesian version of the ML
lasso method (Park & Casella, 2008). This is one of the most famous shrinkage
priors and has been employed in various data analyses (e.g., Feng et al., 2017). How-
ever, Bayesian variable selection with the double-exponential prior needs to specify
hyperparameters similar to the method of Culpepper and Park (2017). We selected
this prior as a reference in this study to compare horseshoe and horseshoe+ pri-
ors. Horseshoe priors can be classified as global-local priors (Bhadra et al., 2019),
while a discrete mixture of point math of zero is known as spike-and-slab priors (Ish-
waran & Rao, 2005), which has also been employed in variable selection problems.
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Yamaguchi and Zhang

However, spike-and-slab priors require heavy computation to sample from poste-
riors in a high-dimensional regression case (Bhadra et al., 2017). That is why the
double-exponential and two horseshoe priors that can employ tractable Gibbs sam-
pling algorithms are preferred in prior studies. For example, the sampling method
for horseshoe priors has been shown in Makalic and Schmidt (2016a), while Makalic
and Schmidt (2016b) provide full conditional posteriors under the horseshoe+ case.
Comparing double-exponential, horseshoe, and horseshoe+ priors clarify the differ-
ence of shrinkage priors in latent regression model.

Other priors also provide shrinkage estimators (Bhadra et al., 2017) such as gen-
eralized Pareto priors (Armagan et al., 2013) or normal-gamma priors (Griffin &
Brown, 2010). Compared to these priors, the horseshoe prior has variable selection
optimality and is known as a robust variable selection method (Bhadra et al., 2017).
This theoretically favorable nature is useful for interpretation when selecting vari-
able selection methods. Furthermore, horseshoe priors are under the umbrella of a
normal-scale mixture distribution family (Andrews & Mallows, 1974), which has a
strong shrinkage effect for small value regression coefficients but not for large coeffi-
cients. In particular, horseshoe+ has stronger shrinkage effects than the usual horse-
shoe prior. The horseshoe+ prior-based Gibbs sampling algorithm is easily applied
with only a small modification of the usual horseshoe prior settings. Other detailed
theoretical properties of horseshoe priors have been described by Bhadra et al. (2017,
2019) and Carvalho et al. (2009, 2010). In a nutshell, horseshoe priors are considered
cutting-edge priors of Bayesian shrinkage methods.

Double-exponential prior. In this section, we describe the full conditional poste-
rior of regression coeffects under the double-exponential prior, which is the most fun-
damental Bayesian shrinkage prior. The double-exponential prior case Gibbs sam-
pling algorithm can be compared to the horseshoe priors’ case because it is a de facto
standard prior for the Bayesian variable selection method. The double-exponential
prior for the regression coefficients in Equation 2 is expressed as

p (βk|λ) = λ

2
exp (−λ |βk|) . (16)

However, random sampling from a double-exponential prior is inefficient. Park
and Casella (2008) derived a hierarchical representation of the prior of βk as

p (βk|uk ) = N (0, uk ) , (17)

p
(
uk|λ2

) = Exp

(
λ2

2

)
, (18)

p
(
λ2|a, b

) = Gam (aλ, bλ) , (19)

where Exp(ψ) is an exponential distribution with parameter ψ whose probability
density function is f (x;ψ) = ψ exp(−xψ). Moreover, Gam(aλ, bλ) are gamma dis-
tributions with shape parameter aλ and rate parameter bλ, which should be specified
manually. Note that, in the previous literature formulation, the prior variance of βk is
σ2uk rather than uk . However, in this study, the variance of the latent trait of individ-
ual proficiency was fixed at one: σ2 = 1, while the prior variance of the regression
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Fully Gibbs Sampling Algorithms

coefficient was also fixed at one. Under this formulation, if the latent proficiency vec-
tor θ is obtained, the joint conditional distribution of β, u = (u1, . . . , up), and λ2

given θ and X that is I × J data matrix (x�
1 , . . . , x�

I )
�

is proportional to the product
of the complete data likelihood and the priors:

p
(
β, u,λ2|θ, X, aλ, bλ

) ∝ p (θ|X, β) p (β|u) p
(
u|λ2

)
p
(
λ2|a, b

)
. (20)

The logarithm of the joint conditional distribution is

log p
(
β, u,λ2|θ, X, aλ, bλ

) = −1

2
(θ − Xβ)� (θ − Xβ) − 1

2

∑
k

β2
k

uk
− λ2

2

∑
k

uk

−1

2

∑
k

uk + (aλ + p) log
(
λ2
)− b2

λλ
2 + C, (21)

where C is the normalization constant.
From Equation 21, the full conditional posterior of β is a multivariate normal dis-

tribution:

p (β|θ, X, u) = N
(
μβ, �β

)
, (22)

where ⎧⎨
⎩

μβ = �β X�θ,

�β = (
X�X + D

)−1
,

D = diag
(
u−1

1 , . . . , u−1
p

)
.

(23)

The posterior distribution of u−1
k can be expressed as

p
(
u−1

k |λ2, βk
) = InvGauss

(√
λ2

β2
k

,λ2

)
, (24)

where “InvGauss” is an inverse Gauss distribution with density function

f (x;μ,η) =
√

η

2π
x− 3

2 exp{− η(x−μ)2

2μ2x }, which μ is mean and η is the dispersion pa-

rameter (Giner & Smyth, 2016). Finally, the posterior distribution of λ2 is the gamma
distribution.

p
(
λ2|u, aλ, bλ

) = Gam

(
aλ + p, bλ +

∑
k uk

2

)
. (25)

As mentioned above, the full conditional distributions are all tractable distribu-
tions. The double-exponential shrinkage prior sometimes overly shrinks large value
coefficients (Carvalho et al., 2009) but it still plays an important role as a reference
method.

Horseshoe prior. This section introduces the horseshoe prior. The horseshoe
prior of the latent regression coefficient is

p
(
βk|λ2

k, τ
2
) = N

(
0,λ2

kτ
2
)
, (26)

and local shrinkage λ2
k and global shrinkage τ2 parameters with distributions

p
(
λ2

k

) = C+ (0, 1) , (27)
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Yamaguchi and Zhang

p
(
τ2
) = C+ (0, 1) , (28)

where C+(0, 1) is the standard half-Cauchy distribution with a probability density
function f (x; 0, 1) = 2/π(1 + x2) for x > 0. The local shrinkage parameter λ2

k
controls the strength of shrinkage of the kth regression coefficient. In addition, the
global shrinkage τ2 parameter controls the overall shrinkage of all regression coef-
ficients. As mentioned before, σ2 was fixed to one, and the variance term was ex-
pressed as λ2

kτ
2 rather than λ2

kτ
2σ2, which was shown in previous sparse Bayesian

regression literature. Similar to the double-exponential prior case, the half-Cauchy
distribution can be expressed in a hierarchical form with two simple distributions
(Makalic & Schmidt, 2016a). The prior distribution of λ2

k is decamped as

p
(
λ2

k |νk
) = InvGam

(
1

2
,

1

νk

)
, (29)

p (νk ) = InvGam

(
1

2
, 1

)
, (30)

where “InvGam” is the inverse gamma distribution with parameters a and b:
f (x; a, b) = ba

�(a) ( 1
x )

a+1
exp(− b

x ). The same expression for τ2 can be applied, and
the result is

p
(
τ2|ξ) = InvGam

(
1

2
,

1

ξ

)
, (31)

p (ξ) = InvGam

(
1

2
, 1

)
. (32)

These hierarchical representations allow us to derive full conditional posterior
with given θ, and posterior is

p
(
β,λ2, ν, τ2, ξ|θ, X

) ∝ p
(
θ|X, β,λ2, τ2

)
p
(
λ2|ν) p (ν) p

(
τ2|ξ) p (ξ) , (33)

where λ2 = (λ2
1, . . . ,λ

2
p) and ν = (ν1, . . . , νp) while independence is assumed

among the regression coefficients. The logarithm of the posterior distribution is

log p
(
β,λ2, ν, τ2, ξ|θ, X

) = −1

2
(θ − Xβ)� (θ − Xβ) −

(
p + 1

2
+ 1

)
log

(
τ2
)

−2
∑

k

log
(
λ2

k

)− 1

2τ2

∑
k

β2
k

λ2
k

−
∑

k

1

νk

(
1

λ2
k

+ 1

)
− 2

∑
k

log νk − 2 log ξ − 1

ξτ2 − 1

ξ
+ C.(34)

Sorting out Equation 34, the full conditional distribution of the regression coef-
ficients β can be seen as a multivariate normal distribution, similar to the double-
exponential prior case:

p
(
β|θ,λ2, τ2

) = N
(
μβ, �β

)
, (35)
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Fully Gibbs Sampling Algorithms

where ⎧⎨
⎩

μβ = �β X�θ,

�β = (
X�X + D

)−1
,

D = diag
(
λ−2

1 , . . . ,λ−2
p

)
/τ2.

(36)

The full conditional distributions of λ2
k , νk , τ2, and ξ are all inverse gamma distri-

butions with different parameters:

p
(
λ2

k |βk, τ
2, νk

) = InvGam

(
1,

β2
k

2τ2
+ 1

νk

)
, (37)

p
(
νk|λ2

k

) = InvGam

(
1, 1 + 1

λ2
k

)
, (38)

p
(
τ2|β,λ2) = InvGam

(
p + 1

2
,

1

ξ
+ 1

2

∑
k

β2
k

λ2
k

)
, (39)

p
(
ξ|τ2

) = InvGam

(
1, 1 + 1

τ2

)
. (40)

The full conditional posteriors are a multivariate normal distribution or inverse
gamma distribution. Shrinkage estimation can be achieved through a combination of
simple well-known distributions. The detailed derivation is shown in Online Supple-
mentary Material A.

The theoretical mechanism of how horseshoe prior shrink coefficients is obtained
by the shrinkage weight κk = 1/(1 + λkτ). If κk ≈ 1, the kth regression coeffect
may be a strong signal, and if κk ≈ 0, it indicates that the coefficient has totally
shrunk to zero (Carvalho et al., 2010). The shrinkage prior defined in Equations 27
and 28 can be transformed to the shrinkage weight scale, which provides a beta
distribution with two 1/2 parameters in the case τ = 1: p (κk ) = κ

1/2
k (1 − κk )1/2.

The distribution shape of κk concentrates on zero and one and looks like a horseshoe,
which is the reason for the prior name.

Horseshoe+ prior. The extension of horseshoe prior to horseshoe+ prior is
straightforward. We changed p (λ2

k ) = C+ (0, 1) to

p
(
λ2

k |φk
) = C+ (0,φk ) , (41)

p (φk ) = C+ (0, 1) . (42)

This is a hierarchy of two half-Cauchy distributions. The hierarchical representa-
tions of Equations 41 and 42 is

p
(
λ2

k |νk
) = InvGam

(
1

2
,

1

νk

)
, (43)

p
(
νk|φ2

k

) = InvGam

(
1

2
,

1

φ2
k

)
, (44)
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Yamaguchi and Zhang

p
(
φ2

k |ζk
) = InvGam

(
1

2
,

1

ζk

)
, (45)

p (ζk ) = InvGam

(
1

2
, 1

)
. (46)

With this hierarchical representation, the full conditional posterior of λ2
k is the

same as Equation 37, and those of νk , φ2
k , and ζk are

p
(
νk|λ2

k,φ
2
k

) = InvGam

(
1,

1

φ2
k

+ 1

λ2
k

)
, (47)

p
(
φ2

k |νk, ζk
) = InvGam

(
1,

1

νk
+ 1

ζk

)
, (48)

p
(
ζk|φ2

k

) = InvGam

(
1, 1 + 1

φ2
k

)
. (49)

The full conditional posteriors of the other parameters are the same as in the horse-
shoe prior setting.

Sampling Algorithms for Shrinkage Priors in Latent Regression Models

We introduced the full conditional posterior distributions of the 2PL IRT model pa-
rameters and latent regression coefficients in the previous section. Combining them
will prove fully Gibbs sampling algorithms. Introducing the upper script (m) for the
MCMC iteration number, the Gibbs sampling algorithm of the double-exponential
prior model is as follows:

1. Initialize θ, a, b, u, and λ, and set iteration counter m = 0.
2. Sample β(m+1) from normal distribution in Equation 22.
3. Sample u−1(m+1)

k , k = 1, . . . , p, from inverse Gauss distribution in Equa-
tion 24.

4. Sample λ2(m+1) from gamma distribution in Equation 25.
5. Sample w(m+1)

i j , i = 1, . . . , I, j = 1, . . . , J, from Pólya-Gamma distribution
in Equation 5.

6. Sample a(m+1)
j , j = 1, . . . , J from normal distribution in Equation 8.

7. Sample b(m+1)
j , j = 1, . . . , J from normal distribution in Equation 11.

8. Sample θ
(m+1)
i , i = 1, . . . , I from normal distribution in Equation 14, and

m = m + 1.
9. Repeat Steps 2–8 until m reaches the prespecified iteration number.

For Horseshoe prior case,

1. Initialize θ, a, b, λ2, τ2, and ξ, and set iteration counter m = 0.
2. Sample β(m+1) from normal distribution in Equation 35.
3. Sample λ

2(m+1)
k , k = 1, . . . , p, from inverse gamma distribution in Equa-

tion 37.

212

 17453984, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jedm

.12348 by U
niversity O

f A
rkansas L

ibrary, W
iley O

nline L
ibrary on [06/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Fully Gibbs Sampling Algorithms

4. Sample ν
(m+1)
k , k = 1, . . . , p, from inverse gamma distribution in Equa-

tion 38.
5. Sample τ2(m+1) from inverse gamma distribution in Equation 39).
6. Sample ξ(m+1) from inverse gamma distribution in Equation 40.
7. Sample w(m+1)

i j , i = 1, . . . , I, j = 1, . . . , J, from Pólya-Gamma distribu-
tion in Equation 5.

8. Sample a(m+1)
j , j = 1, . . . , J from normal distribution in Equation 8.

9. Sample b(m+1)
j , j = 1, . . . , J from normal distribution in Equation 11.

10. Sample θ
(m+1)
i , i = 1, . . . , I from normal distribution in Equation 14 and

m = m + 1.
11. Repeat Steps 2–10 until m reaches the prespecified iteration number.

Finally, for the horseshoe+ prior case, we slightly changed the fourth step in the
horseshoe prior case and inserted the following sampling steps:

1. Sample ν
2(m+1)
k , k = 1, . . . , p, from inverse gamma distribution in Equa-

tion 47.
2. Sample φ

2(m+1)
k , k = 1, . . . , p, from inverse gamma distribution in Equa-

tion 48.
3. Sample ζ

(m+1)
k , k = 1, . . . , p, from inverse gamma distribution in Equation 49.

This small change can provide stronger shrinkage effects on the estimation of β.
We also developed Gibbs sampling with a uniform prior for the regression coeffi-

cient β as another reference algorithm. The full conditional distribution given θ and
X becomes a multivariate normal distribution

p (β|θ, X) = N
((

X�X
)−1

X�θ,
(
X�X

)−1
)

. (50)

We can use this conditional distribution when sampling β instead of those with
shrinkage priors. The sampling part of the 2PL IRT model parameters did not change.

Simulation Study 1

Simulation Settings

In the simulation study, we compared four types of Gibbs sampling methods in-
troduced in this study: double-exponential, horseshoe, horseshoe+, and uniform pri-
ors with varied conditions. We manipulated three factors: (1) number of IRT items
(10 and 30), (2) sample size (100 and 1,000), and (3) number of covariates (20
and 40), which leads to eight conditions in total. The true discrimination parameter
aj and difficulty parameter b j were randomly generated from Uni f (1.3, 2.5) and
Uni f (−2.5, 2.5), respectively, for each simulation replication, where Uni f (a, b) is
a uniform distribution from a to b. The difficulty parameters covered a reasonably
wide range of latent trait, and discrimination parameters were not particularly small
or large. These settings were cleaner situation than real data situation (OECD, 2017;
Appendix A). We start a relatively simple case to compare estimation algorithms.

The number of true nonzero regression coefficients was fixed to eight. The
first four coefficients generated positive range uniform distributions, which were
β1, . . . , β4 ∼ Uni f (1, 4) , while the fifth to eighth coefficients generated a nega-
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Yamaguchi and Zhang

tive range uniform distribution, β5, . . . , β8 ∼ Uni f (−4, −1) . The remaining 12 or
32 regression coefficients were fixed to zero. The covariates were assumed to follow
a multivariate normal distribution with zero means and 0.5 correlation for all pairs
of covariates and 0.2 standard deviation for all covariates. In the previous variable
selection study, the study assumed a simulation setting with regression coefficient
β = (3, 1.5, 0, 0, 2, 0, 0, 0)� and residual variance σ2 = 9. Covariate X was gener-
ated from a multivariate normal distribution with 0 means and variance covariance
matrix whose diagonal elements were 1 and the other elements were 0.5 (e.g., van
Erp et al., 2019). We used Uni f (1, 4) to simulate strong coefficients in previous sim-
ulation studies. Moreover, it was not realistic to assume only positive coefficients, so
Uni f (−4, −1) was employed to extend previous simulation. The range of uniform
distribution covered previous nonzero coefficients, 1.5, 2, and 3. Further, we selected
an SD = 0.2 of covariates to limit the deviation of dependent variable θ. When SD =
1, there was a large deviation of θ; so, smaller SDs were selected. The correlations
were similar to previous simulation study. With the covariate and regression coef-
ficients, true latent proficiencies θi were generated from a normal distribution with
unit variance using Equation 2. Finally, an item response yi j was randomly generated
from the Bernoulli distribution with success probability (1 + exp(−aj (θi − b j )))

−1

with true parameters a j, b j , and θi . The four Gibbs sampling algorithms were ap-
plied to the same dataset to maintain comparability, and the simulation was replicated
50 times.

Hyper parameters aλ and bλ in the double-exponential prior were set to 1. For the
MCMC setting, the number of MCMC chains was three, with 10,000 iterations for
each chain. The first 5,000 iterations were discarded during the burn-in period. A
convergence check was conducted for the regression coefficients, latent proficiency,
discrimination, and difficulty parameters. The Gelman-Rubin R̂ index (Brooks &
Gelman, 1998) was selected as the convergence criterion, and if the value was R̂ ≤
1.10 then the MCMC chain is considered to have converged. The R̂ was calculated
using the CODA package (Plummer et al., 2006). The MCMC starting values were
randomly selected. The posterior mean was employed for point estimates, except
for the double-exponential prior case. The posterior median was used for the point
estimate of the double-exponential prior because the posterior median rather than the
mean was the shrinkage estimator for the prior setting.

The evaluation criteria of algorithms are bias, root mean square error (RMSE),
and an average length of 95% credible interval (95% CI length). In the regression
coefficients, bias, RMSE, and 95% CI length were calculated for each parameter,
and they were averaged over 50 replications for the first eight coefficients (nonzero
coefficients) and the other eight coefficients (zero coefficients). This is because the
estimates behave differently for the nonzero and zero coefficients. According to pre-
vious studies, it was expected that horseshoe+ and horseshoe priors would show
smaller bias and shorter 95% CI length than double-exponential priors. The uniform
prior was expected to have the largest RMSE and longest 95% CI length among
the four algorithms. The three evaluation indicators were also calculated for the IRT
discrimination and difficulty parameters and were averaged over the items. The re-
covery of the latent trait parameter was evaluated as the average correlation between
the estimated and true values. The reason for selecting correlation was as follows.
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Fully Gibbs Sampling Algorithms

The correlation and bias and RMSEs are different evaluation criteria. The individual
latent trait recovery was a random effect that depends on the assumption of scale
of location. Additionally, in the latent regression context, individual latent trait re-
covery was not a primary purpose. A high correlation between estimated and true
traits was a necessary condition for an appropriate estimation method because if es-
timation method could not recover the latent traits, it was considered invalid. Biases
and RMSEs were important evaluation criteria in our context. The purpose of latent
regression model was to assess the effects of covariates on latent traits. Therefore,
unbiasedness and smaller RMSEs of regression coefficients were preferable features
of estimation methods.

Results

The R̂ for all important parameters was less than 1.10, so the MCMC iterations
were concluded to have converged. Table 1 lists the simulation results for the regres-
sion coefficients. The bias results were not very different for the four Gibbs sampling
algorithms. In general, the nonzero coefficient showed a larger bias than the zero co-
efficients. Increments in sample size and number of items reduced bias. The number
of increases in covariates inflated biases for nonzero coeffects. It should be noted
that even for 10 items, 100 sample size, and 40 covariate conditions, the bias values
were small—the largest bias was less than 0.1.

Explicit differences among the four were shown in RMSE and 95% CI length. In
the 100-sample size and 10 item conditions, horseshoe and horseshoe+ priors had
smaller RMSEs than double-exponential and uniform priors. Particularly in the 20
covariates case, the RMSE for zero coefficients of two horseshoe priors was half that
of the double-exponential priors. Furthermore, in the case of 10 items, 100 sample
size, 40 covariate conditions, horseshoe prior, double-exponential prior, and uniform
prior indicated 1.978, 3.926, and 7.466, respectively, on the RMSE of nonzero co-
efficients. Approximately, the horseshoe prior was twice and four times more stable
than the double-exponential and uniform priors, respectively, among nonzero co-
efficients. Under similar condition, horseshoe prior, double-exponential prior, and
uniform prior indicated 0.492, 2.636, and 4.814, respectively, on the RMSE of zero
coefficients. Again, the horseshoe prior was 5 times and 10 times more stable than
the double-exponential and uniform priors, respectively, in zero coefficients. These
results clearly indicated that the estimation with the horseshoe prior was stable than
the double-exponential or uniform prior cases.

In addition, the 95% CI length for zero-coefficients of two horseshoe priors was
approximately one point smaller than the double-exponential prior. The difference
was larger in the 40 covariate conditions. Moreover, the 95% CI length for zero co-
efficients of two horseshoe priors was shorter than half of the uniform prior. The
RMSE and 95% CI length for nonzero coefficients of the horseshoe priors in 100
sample size, 10 items, and 40 covariate conditions were much smaller than the
double-exponential and uniform prior situation.

In a large-sample size setting, the difference in RMSEs between horseshoe priors
and the other ones was smaller. However, even under 1,000 sample size conditions,
the RMSEs of the horseshoe priors for zero coefficients were approximately half the
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Fully Gibbs Sampling Algorithms

double-exponential case or better. In summary, the horseshoe priors provided more
stable estimates than the double-exponential prior or uniform prior setting, especially
for small sample sizes. Horseshoe+ was slightly better than the usual horseshoe
prior.

The simulation results of the discrimination and difficulty parameters in the IRT
model are presented in Tables 2 and 3. In the result of the discrimination parameters
(Table 2), the horseshoe priors showed smaller biases and RMSEs than the double-
exponential and uniform priors, which was rather unexpected. Previous studies of
horseshoe priors only mentioned regression coefficient, but the horseshoe priors in-
dicated similar effects on the discrimination parameters in this study. In particular,
biases and RMSEs for two horseshoe priors in the 10 items and 100 sample size
conditions were substantially smaller than the other two prior settings. The 95% CI
length results of the double-exponential and uniform priors tended to be slightly
shorter than the horseshoe priors. However, larger sample sizes and items decreased
the estimation difference among the four algorithms.

In the item difficulty parameter results in Table 3, the RMSEs of the horseshoe
priors in the 10 items, 100 sample size, and 40 covariate conditions were also smaller
than those with the other two prior settings. In addition, the RMSEs of the horseshoe
priors were also smaller than the double-exponential or uniform prior in the case of
10 and 30 items, 100 sample size, and 20 and 40 covariates. The other results of the
four algorithms were almost the same, but the horseshoe priors were slightly better in
some cases. The correlation between true and estimated latent proficiency is shown
in Table 4, and all four algorithms indicated sufficiently high correlations.

Simulation Study 2

Simulation Settings

The second simulation aims to check the estimation quality of four shrinkage pri-
ors when weak regression coefficients exist. In total, 8 of 30 regression coefficients
are weak, 8 coefficients are strong, and the other 16 coefficients have zero effect.
Specifically, 8 strong regression coefficients were generated from Uni f (1, 4) or
Uni f (−4, −1), and the weak regression coefficients β9, . . . , β12 and β13, . . . , β16

were generated from Uni f (0, 1) and Uni f (−1, 0). Therefore, 16 coefficients were
active and the remaining 4 or 24 regression coefficients were fixed to zero. Further-
more, we increased the number of simulation replication up to 200 to reduce sam-
pling error. The rest of simulation settings was similar to the first simulation study.

Results

The MCMC chains satisfied convergence criterion. Most results in the 2PL IRT
model were similar to the simulation study 1, so the results tables were shown in
Online Supplementary Materials B. We only show the regression coefficients results
here. Table 5 shows the summary of simulation result of the regression coefficients.
The coefficient types were nonzero strong, nonzero weak, and zero. Biases of horse-
shoe and horseshoe+ priors were slightly smaller than the double-exponential or
uniform priors, but the absolute values were generally small. That is, the four priors
were not largely different in terms of bias. However, the biases results indicate that
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Fully Gibbs Sampling Algorithms

horseshoe and horseshoe+ priors can correctly recover small magnitude regression
coefficients.

The general tendency of RMSE and 95% CI lengths were similar to the first
simulation study. The horseshoe and horseshoe+ priors indicated smaller RMSES
for nonzero weak covariates or zero covariates than the double-exponential or uni-
form priors especially in larger number of covariates conditions. For example, the
RMSEs of nonzero weak coefficients of the horseshoe, horseshoe+ prior, double-
exponential, and uniform priors in 10 items, 100 sample size, and 40 covariates
condition were 0.691, 0.662, 3.055, and 5.926, respectively. In this condition, the
horseshoe and horseshoe+ priors displayed three to five times better stability than
the other prior settings. Furthermore, we found that the horseshoe and horseshoe+
priors worked better in high dimensionality than in relatively lower dimensionality
condition. For example, in the 40 covariate conditions, the RMSE of the nonzero
weak and zero coefficients with the horseshoe and horseshoe+ priors was gener-
ally smaller than the case of 20 covariates. However, the corresponding RMSE of
the double-exponential and uniform priors in the 40 covariates conditions was larger
than the 20 covariates conditions.

Regarding the uncertainty of Bayesian estimates, the horseshoe and horseshoe+
priors performed better than the other priors. For example, the 95% CI length of
the nonzero weak and zero coefficients with the horseshoe and horseshoe+ priors
in 100 sample conditions was shorter than the double-exponential and uniform pri-
ors. In a lager sample size setting, the RMSE difference among four priors became
trivial. In addition, the estimates of nonzero strong coefficients among the horse-
shoe, horseshoe+, and double-exponential priors were similar. However, the RMSE
of nonzero strong coefficients with the three shrinkage priors were smaller than the
uniform prior case, indicating that the uniform prior has worst estimation accuracy
among all shrinkage methods. Therefore, the horseshoe and horseshoe+ priors can
recover regression coefficients, and their RMSE and shorter 95% CI length for the
nonzero and zero coefficients are smaller and shorter than the other priors especially
in a small sample size setting.

Application to PISA Data

In this section, we demonstrated an application to real data obtained from the PISA
2018 math assessment. The goal was to examine whether Bayesian latent regression
modeling with shrinkage prior approaches can select the important predictors of stu-
dents’ mathematics achievement. The construct of mathematical literacy used in this
study was intended to describe the capacities of individuals to reason mathematically
and use mathematical concepts, procedures, facts, and tools to describe, explain, and
predict phenomena. The real data analysis R syntax is available on the Open Science
Framework (OSF) web page: https://osf.io/u35z8.

Data Analysis Setting

Since participating students took different mathematics clusters and student ques-
tionnaires in the PISA 2018, only the data from a completed cluster of mathematics
measures and 19 questions from students’ questionnaires answered by students in
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the United States were taken into consideration. After omitting missing values, 422
students with an average age of 15.8 were kept for further analysis. The sample con-
sisted of 206 males (48.8%) and 216 females (51.2%). The data used in this study
included nine mathematical items: (I1-I9), and 19 covariates from the student ques-
tionnaire. The descriptive statistics of the measurement items and predictive variables
are presented in Table 6. It should be noted that Table 6 only shows the raw scales
of the variables of the samples. Continuous predictive covariates were standardized
before conducting the analysis.

As Table 6 shows, the measurement items were dichotomously scored with 1 =
correct and 0 = incorrect, including four difficult items (I1-I4), one moderately dif-
ficult item (I5), and four easy items (I6-I9). As for predictive covariates, apart from
SEX (0 = female, 1 = male) and REPEAT (0 = no grade repetition, 1 = have
grade repetition) as binary variables, other covariates were normalized continuous
variables. All continuous covariates were standardized with a mean of zero and a
standardized deviation of one for the proposed methods.

The proposed Bayesian variable selection methods with double-exponential,
horseshoe, horseshoe+, and uniform prior methods were fitted to the samples us-
ing R ver. 4.2 (R Core Team, 2021). Gibbs sampling algorithms were used with four
MCMC chains. Each MCMC chain had 10,000 iterations, with the first 5,000 itera-
tions considered as burn-ins. Credible interval-based variable selection criterion was
employed in the real data analysis setting, which was proposed in previous research
(e.g., Li and Lin 2010, p. 157; van Erp et al., 2019). Li and Lin (2010) mentioned
ad hoc treatment for variable selection in Bayesian approaches and suggested the
credible interval criterion. The credible interval criterion assumes that a covariate
is excluded from the set of covariates if its 95% credible interval covers zero and
retained otherwise.

Results

The results showed that all four algorithms converged according to the Gelman-
Rubin index (R̂ ≤ 1.10). Table 7 reports the point estimates and 95% CI of the re-
gression coefficients. It was clear that the model with the double-exponential priors
provided results with similar magnitude and 95% credit interval (CI) length as the
model with the uniform prior. Models with horseshoe and horseshoe+ priors had
coefficients with smaller magnitudes and shorter 95% CI lengths in all predictive co-
variates. Eleven covariates—parents’ emotional support, teacher instruction, home
education resources, family wealth, students’ attitudes, students’ sense of belonging
to a school, instructional time per week, grade repetition, perception of coopera-
tion at school, subjective well-being, and mastery of goal orientation—negatively
affected the latent mathematical proficiency of students. The REPEAT (grade repe-
tition) covariate had the largest negative effect on estimated math proficiency. Con-
versely, eight covariates—gender, home possessions, parental educational level, the
learning time in mathematics, adaptation of instruction, perceived teacher’s interest,
perception of competitiveness at school, and resilience—had positive coefficients on
outcomes in which home possessions had the highest coefficient predicting math
ability.
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Fully Gibbs Sampling Algorithms

Figure 1. Parameter estimates and 95% credible intervals of covariates in the PISA 2018
math assessment data with four Gibbs sampling results. Note: GENDER: Student
(Standardized) Gender, EMOSUPS: Parents’ emotional support perceived by student,
DIRINS: Teacher-directed instruction, HEDRES: Home educational resources, WEALTH:
Family wealth, ATTLNACT: Attitude toward school: Learning activities, BELONG: Sense
of belonging to school, HOMEPOS: Home possessions, HISCED: Highest educational level
of parents, TMINS: Total minutes of instructional time per week, MMINS: Learning time in
mathematics, REPEAT: Grade repetition, ADAPTIVITY: Adaptation of instruction,
TEACHINT: Perceived teacher’s interest, PERCOMP: Perception of competitiveness at
school, PERCOOP: Perception of cooperation at school, SWBP: Subjective well-being:
Positive affect, RESILIENCE: Resilience, and MASTGOAL: Mastery goal orientation.
[Color figure can be viewed at wileyonlinelibrary.com]

Figure 1 shows the point estimates and 95% CIs for all approaches. Compared
to the horseshoe and horseshoe+ approaches, double-exponential prior and uniform
prior approaches had more nonzero covariates (p = 7). The horseshoe+ approach
had the most parsimonious feature set among the four approaches, which has only
two nonzero covariates, while the horseshoe approach selected three features as
nonzero covariates. Home possession (HOMEPOS) as one of surrogate variable of
social-economic status (SES; Lee & Stankov [2018] considered parental education
and home possessions as the two SES-related variables) and learning time in mathe-
matics (MMINS) were the two covariates selected by all approaches, indicating that
the SES status of students and learning time in math had an important impact on the
improvement of mathematics capacities. These results are consistent with prior lit-
erature (e.g., Gamazo & Martínez-Abad, 2020; Kalaycıoğlu, 2015; Lee & Stankov,
2018), and the horseshoe+ priors identified fewer but stronger predictors to predict
mathematical ability.
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Yamaguchi and Zhang

Conclusion

In the present study, we proposed fully Gibbs sampling algorithms for Bayesian
variable selection under a unidimensional IRT model latent regression model. The
shrinkage priors that were double-exponential, horseshoe, and horseshoe+ were
compared to the uniform prior case in both the simulation and real data example.
The two simulation studies revealed that the horseshoe priors had smaller RMSEs
and shorter 95% CI length of regression coefficients than double-exponential or uni-
form priors. The prior setting difference was drastic when there were fewer samples,
lesser measurement items, and several covariates. Moreover, the stability results of
the estimation were shown not only in regression coefficients but also in item dis-
crimination parameters. The horseshoe+ prior had slightly better scores than the
usual horseshoe. From the simulation study, we recommend using horseshoe+ prior
for Bayesian variable selection, even in the latent regression context.

The real data example indicates the utility of Bayesian variable selection with
horseshoe priors. Both horseshoe and horseshoe+ priors selected only home posses-
sions (HOMEPOS) and learning time in mathematics (MMINS) as the most predic-
tive variables for students’ mathematical proficiency. These findings are consistent
with prior studies that SES and self-efficiency are the most important predictors of
math achievement. It should be noted that in previous studies, multiple factors (such
as home possession and parental education) are considered as SES-related variables,
while our approach selects only one most important factor. This may help in big data
mining for large-scale assessments when multiple predictors exist.

One limitation of the proposed Gibbs sampling algorithm is that it can be applied
to binary-valued item responses without guessing parameters. For future studies, a
more flexible algorithm is needed to analyze nominal, ordinal, or partial credit type
item responses. Another limitation of this study is that we assumed only one la-
tent trait. In many applications, we assumed unidimensional latent proficiency, so
the utility of the proposed algorithms would not be compromised. However, treat-
ing multiple latent proficiencies as Culpepper and Park (2017) did may be required
for more flexible real data analysis. Bayesian shrinkage priors, especially horseshoe
priors, have great flexibility and can easily be expanded to various psychometric
models such as multidimensional IRT or diagnostic classification models. This has
great implications for future studies.

Our method has several benefits for operational practice in educational measure-
ment as follows. First, when we select several background characteristics of indi-
vidual such as individual ethics, we can assess DIF of those group variables on the
assessment from the estimation, which means that a distinct DIF study is not re-
quired. Second, we can efficiently omit noise in large-scale assessment setting with
the proposed approach, which benefits data analytics. To be specific, it may be diffi-
cult to judge whether the estimated coefficient is large in a large sample size setting
because null hypothesis H0 : β = 0 tends to be rejected even if the estimated co-
efficient is a smaller value. However, shrinkage prior can automatically shrink the
coefficient to zero if the value is close to zero. Third, horseshoe priors can provide
stable item parameter estimates even when sample size is relatively small, and this
feature helps to reduce the number of sample when calibrating item parameters. Item
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Fully Gibbs Sampling Algorithms

parameter calibration needs large samples but including coefficients can help to re-
duce the number.

One limitation of proposed method is that the latent trait is unidimensional. In the
future study, the method needs to be extended to be suitable for multidimensional
latent traits similar to Culpepper and Park (2017). However, unidimensional IRT
model is sometimes preferred in real application field (e.g., OECD, 2017, chapter 9)
and the prior setting is theoretically appropriate than double-exponential prior that
has been employed in many studies. Therefore, the proposed method provided a new
way to conduct sparsity induce analysis in IRT model setting.

Focusing on spike-and-slab priors is a future research direction. Spike-and-slab
prior is famous in Bayesian variable selection, and variational Bayesian inference al-
gorithm for spike-and-slab priors has already been developed (Ormerod et al., 2017;
Ray & Szabó, 2021). Developing variational inference methods for horseshoe priors
in latent regression and comparing them with spike-and-slab variational inference
can extend the applicability of sparse estimation in latent regression models.
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