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Recently, Bayesian diagnostic classification modeling has been becoming popular
in health psychology, education, and sociology. Typically information criteria are
used for model selection when researchers want to choose the best model among al-
ternative models. In Bayesian estimation, posterior predictive checking is a flexible
Bayesian model evaluation tool, which allows researchers to detect Q-matrix mis-
specification. However, model selection methods using posterior predictive check-
ing (PPC) for Bayesian DCM are not well investigated. Thus, this research aims to
propose a novel model selection approach using posterior predictive checking with
limited-information statistics for selecting the correct Q-matrix. A simulation study
was conducted to examine the performance of the proposed method. Furthermore,
an empirical example was provided to illustrate how it can be used in real scenarios.

Introduction

Bayesian diagnostic classification models (BDCMs) have recently gained more
attention across multiple disciplines (Hu & Templin, 2020; Thompson, 2020). Both
model selection and model fit evaluation methods play important roles in a model-
building sequence of psychometric models, but the link between these two compo-
nents in an analysis has not been extensively examined in the literature on BDCMs.
This paper seeks to fill the gap of model selection problems in BDCMs by proposing
a novel model selection approach based on limited-information model fit methods,
as implemented in Bayesian posterior predictive model checking. The novelty of the
proposed approach stems from two aspects: first, few previous studies have utilized
limited-information statistics as test statistics in model selection and model selection
within Bayesian DCMs; second, to our knowledge, this is the first study employing
Bayesian Networks (BN; Almond et al., 2007) as a fully Bayesian model selection
method for DCMs.

The core component of model selection of diagnostic classification modeling is
selecting an appropriate Q-matrix. A Q-matrix is an indicator matrix linking the
items to the latent constructs they measure (i.e., attributes; e.g., Tatsuoka, 1983).
The Q-matrix is usually established by expert judgment, leading to uncertainties
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about some of its elements. To address this concern, two primary strategies are com-
monly used to identify the best-fitting model: Q-matrix validation approaches and
model selection approaches. Many Q-matrix validation methods attempt to recon-
struct the Q-matrix by specifying certain elements of Q-matrix as random variables
and subsequently penalize them using a shrinkage approach (e.g., DeCarlo, 2012).
The alternative model selection methods select a best-fitting Q-matrix by compar-
ing multiple Q-matrices using model fit measures. Typical model fit indices include
information criteria, such as Akaike’s information coefficient (AIC; Akaike, 1974),
Bayesian information coefficient (BIC; Schwarz, 1978), and the Watanabe-Akaike
information criterion (WAIC; Watanabe, 2010). However, the effectiveness of these
information indices in selecting the Bayesian diagnostic classification model from
item response theory (IRT) has not been demonstrated adequately (Sen & Bradshaw,
2017; Zhang et al., 2019). In addition, although previous studies have investigated
the performance of several fit indices in choosing the correct DCM in the frequentist
framework (Lei & Li, 2016), the comparative performance of these information in-
dices in selecting Bayesian DCMs with various levels of Q-matrix misspecification
has yet been well investigated. Thus, the main purpose of this study is to propose
a fully Bayesian model selection approach based on limited-information statistics
and Bayesian network for comparing multiple Bayesian DCMs with various types of
Q-matrix misspecification.

Specifically, our proposed approach employs the log-linear cognitive diagnosis
model (LCDM; Henson et al., 2008) as both the data-generation model and data-
analysis model. The LCDM was chosen due to its status as the saturated version of
many diagnostic classification model variants (Henson et al., 2008) and its robust-
ness in cases where a hierarchical structure exists within the DCM (Templin and
Bradshaw, 2014). The limited-information statistic, M2, was used as the discrepancy
measure of the posterior predictive modeling to evaluate the goodness-of-fit of mod-
els (Maydeu-Olivares & Joe, 2005). The M2 statistic is a model-data fitting index
making use of only up to second-order marginal probabilities of the data tables and
has shown good performance in simulation studies (Maydeu-Olivares, 2013). In-
stead of using the point estimate of M2 in the posterior predictive checking process
for model fit evaluation, the Kolmogorov-Smirnov (KS) statistic—a nonparametric
method of describing the highest distances between two samples—was used to evalu-
ate the entire space of posterior predictive distributions between the proposed model
and the saturated model.

The rest of the paper is organized as follows. First, “Background” section reviews
the background of key components of the proposed method, including diagnostic
classification modeling, Bayesian Network modeling, and the general form of the
posterior predictive model checking method. Second, the proposed KS statistics-
based posterior predictive model checking, utilizing limited-information M2 statistics
as summary statistics (hereafter referred to as KS-PP-M2), is introduced in “KS-PP-
M2” section. Third, a Monte Carlo simulation study was performed to examine the
performance of the proposed approach in model selection with various types of Q-
matrix misspecification in “Simulation Study” section. Fourth, an empirical study
was conducted to illustrate how to apply the proposed method in real scenarios in
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Zhang et al.

“Empirical Study” section. Finally, “Discussion” section provides a discussion about
the advantages and limitations of the proposed method.

To comprehensively examine the proposed approach for model selection, the fol-
lowing main research questions are investigated:

RQ1 Is KS-PP-M2 sensitive to the model-data misfit with various degrees of Q-
matrix misspecification?

RQ2 Compared to conventional information criteria, does the proposed KS-PP-
M2 approach yield higher accuracy in selecting the correct model?

RQ3 How does the overall discrimination power affect the performance of the fit
indices in choosing the correct model?

Background

Diagnostic Classification Modeling

Diagnostic Classification Models seek to provide each individual’s skill mastery
profile (e.g., whether or not students have mastered a subtraction skill in a math-
ematical assessment), which can be further used for developing targeted interven-
tions. From the statistical perspective, DCMs are a family of restricted latent class
models, which classify samples into attribute profiles (also known as attribute pat-
terns) based on observed responses (typically assessment item responses). Numerous
types of DCMs have been proposed based on various research questions, each with a
different set of assumptions regarding how latent attributes interact to produce item
responses. Among DCMs, LCDM is one of a set of general diagnostic classification
models (Rupp et al., 2010). Many other constrained DCMs are special cases of the
LCDM obtained by imposing different constraints on item parameters (Henson et al.,
2008).

Throughout this study, we denote the index of an item as j, the index of a person as
i, the index of a latent profile as c, and K as the number of attributes. The latent profile
αc is constituted as a vector of attribute mastery status αc = {α1,c, . . . , αk,c, . . . ,αK,c}.
Thus, the LCDM yields a conditional probability of a correct response of person i
for item j with an attribute profile αc:

P
(
Xjc = 1 | αc

) = exp
[
λ j,0 + λ jh

(
αc, q j

)]

1 + exp
[
λ j,0 + λ jh

(
αc, q j

)] , (1)

where αc denotes the attribute mastery pattern of person i. Similar to linear logistic
regression, λ j,0 represents the item intercept parameter for item j, and λ j represents
all main and interaction effects for item j. The Q-matrix is a J by K matrix with
the row vector q j = (

q j1, . . . , q jk, . . . , q jK
)T

that contains the required attributes
to answer item j correctly (e.g., if attribute k is relevant for item j, q jk = 1). The
mapping function h is used to specify the linear combination of attribute patterns αc

and Q-matrix entries q j .

λ jh
(
αc, q j

) =
K∑

k=1

λ j,1,(k)αk,cq jk

+
K−1∑

k=1

K∑

k′=k+1

λ j,2,(k,k′ )αk,cαk′,cq jkq jk′ + · · · ,

(2)
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Bayesian PPMC Model Comparison

where k and k′ denote the index of interaction effects. For example, λ j,2,(k,k′ ) denotes
the regression coefficients of the second-order interaction between kth attribute and
k′th attribute for item j.

In addition to the measurement model that connects observed item responses to
the set of latent attributes, the structural part of the DCM models the dependen-
cies between latent attributes, serving the role of the proficiency model within the
BN framework. Hu and Templin (2020) demonstrated that a BN could be used for
the purpose of model comparisons of nested DCMs. Thus, we use BNs as the fully
saturated reference model in our model fit method. In the next section, BNs are intro-
duced and compared to DCMs in terms of their parameterization and terminology.

Bayesian Networks

To build the reference model of DCMs and the comparative goodness-of-fit statis-
tic for BDCM, Bayesian Networks (BN; Almond et al., 2007, 2009; Pearl, 1988),
also called Bayesian inference networks, was employed as a general version of DCM
(Hu & Templin, 2020; Sinharay & Almond, 2007). BNs are a type of graphical
model, whose nodes represent the variables and whose edges represent conditional
dependencies between nodes.

Compared to DCMs or other latent class models, BNs allow any pattern of depen-
dence consistent with an analyst-specified graph (Almond et al., 2009). A statistical
likelihood of a directed acyclic graph could be represented as:

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

P(Xi = xi | pa(Xi )), (3)

where pa(Xi ) denotes all parents of node Xi, and P(Xi = xi | pa(Xi )) denotes the local
probability distribution of variable Xi conditional on the values of the node’s parents,
pa(Xi ). Considering nodes in BNs have the same statistical interpretation as observed
or latent variables in other latent variable models, some latent variable models can
be reparameterized as BNs (Hu & Templin, 2020), which we demonstrate later. In
educational assessment, the use of such parametrization of BN allows researchers
to estimate the direct dependency from node X2 to node X1, and thus reflects the
dependency in the local distribution at attribute X1.

In BN, conditional probability tables (CBT), Pr(Xi | pa(Xi )), can be constructed
based on saturated multinomial logistic regression models (we will call it saturated
BN in the rest of the paper). As Equation 3 shows, the probability distribution of a
set of random variables X = (X1, . . . , Xn) can be recursively factorized as the con-
ditional probability of each node conditioning on its parent nodes. Following the
notations of Equation 3, let Xj , j = {1, . . . , J}, denotes the observed categorical re-
sponse of item j, and X− j as a matrix with the size of N × (J – 1), which represents
the responses of (J - 1) parent nodes. Then, for a fully connected BN, the conditional
probability of node j can be reparameterized as a logistic regression:

Pr(Xj | X− j, β− j ) = exp (X− jβ− j )

1 + exp (X− jβ− j )
, (4)
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Table 1
Conversion between BN with LCDM

Marginal Probability LCDM BN

P(X1 = 1)
∑2

c=1 P(X1 = 1 | αc )πc P(X1 = 1)
P(X2 = 1)

∑2
c=1 P(X2 = 1 | αc )πc P(X2 = 1 | X1)P(X1)

P(X3 = 1)
∑2

c=1 P(X3 = 1 | αc )πc P(X3 = 1 | X1, X2)P(X2 | X1)P(X1)

Note: c = index of latent class; αc = attribute profile for latent class c; πc = proportion of the latent class
c; P(X1 = 1) = marginal probability of item 1’s value being correct.

where Pr(Xj | X− j, β−j) represents the conditional probability table regarding node
j. Following the logistic regression form, X− j denotes the design matrix of (J – 1)
parent nodes. β− j denotes a (J – 1)-dimensional vector of regression coefficients of
dependent variable node Xj . We note that the model with a logistic link function
used here is a special case of a BN with multinomial logistic regression in which all
variables contain dichotomous values (Xj ∈ {0, 1}). Please refer to Rijmen (2008) for
a detailed explanation of logistic BNs.

In this study, we focus on logistic BNs with up-to second-order interactions be-
cause they are related statistically to the LCDM. Figure S1 shows a BN-based dia-
gram and an LDCM-based diagram for a 3-item test, respectively. Both models have
three main effects (arrows) to be estimated. Table 1 presents the conversion of those
effects between the LCDM and the BN. Besides the main effects, an LCDM has the
same number of parameters as a saturated BN. To be specific, the LCDM has one
intercept and one main effect for each item and one attribute mastery probability
parameter (see Equation 1), which gives rise to 2 × 3(items) + 1 = 7 parameters.
Similarly, a 3-item BN with saturated logistic regression has one intercept, two main
effects and one two-way interaction effect (1 + 2 + 1 = 4 parameters) for item 3,
one intercept and one main effect 1 + 1 = 2 parameters for item 2, and one marginal
probability parameter for item 1, which leads to 7 parameters estimated as well.
However, as the number of attributes increases, there are fewer parameters to be es-
timated in the LCDM with up-to two-way interactions than BN, and thus BN can be
applied as the reference model of LCDM.

In addition to the number of parameters estimated, the key distinction between the
LCDM and general BNs is that the LCDM contains person parameters (the latent
attributes for each individual). The LCDM marginal likelihood function marginal-
izes across the person parameters using a class membership proportion parameter,
πc, indicating the proportion of individuals within a given class (e.g., with a given
attribute profile). Saturated BNs do not include such parameters of latent variables
because BNs are typically modeled as conditional probabilities of children items con-
ditioning on their parent items, P(Xi = 1|pa(Xi )), which are all observed variables.
It should be noted that it is possible to include latent variable(s) in BNs. However,
comparisons between latent BNs with DCMs are outside of the scope of this study.
Please refer to Romeijn and Williamson (2018) for the identifiability of BN with
latent variables.
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Bayesian PPMC Model Comparison

In sum, the logistic BN with up-to second-order interactions is statistically equiv-
alent to the LCDM since one’s parameters can be transformed into the other’s. In the
proposed model selection approach, the BN with a saturated logistic regression is
considered the reference model for the specified constrained LCDM. The compari-
son between these two models facilitates the construction of the proposed goodness-
of-fit statistic. Essentially, this statistic quantifies the degree to which the posterior
predictive distribution of the fit statistic of the specified model overlaps with the
posterior predictive distribution of the fit statistic of the BN model, through a dis-
crepancy measure. A larger discrepancy measure suggests a worse model fit.

Limited-Information Statistics

In this study, limited-information statistics for both DCMs and BN are estimated
to construct the discrepancy measure, which can further be used for model compar-
ison between DCMs. Goodness-of-fit statistics for categorical response models can
be categorized into two types in terms of the dimensions of contingency tables they
use. The first type is called full-information statistics, which are the most commonly
used statistics for model evaluation. Some examples of this type include Pearson’s
test statistics (X 2) and likelihood ratio test statistics (G2). The second type is called
limited-information indices, originally proposed by Maydeu-Olivares (2006), which
make use of lower-order information from observed data contingency tables. Previ-
ous studies suggest that in sparse contingency tables, the empirical Type I error rates
of the X 2 and G2 test statistics do not match their expected rates under their asymp-
totic distributions (e.g., Maydeu-Olivares et al., 2018; Maydeu-Olivares, 2013; Ma,
2020). As the number of items J increases, the contingency tables become more
sparse (more empty cells), with many response patterns having no observations. A
survey with 10 dichotomous items has 210 = 1.024 × 103 response patterns, which
exponentially increases to 220 = 1.0480576 × 107 for 20 items. For most studies
with reasonable sample sizes, the p-value of X 2 and G2 of this 20-item survey is
likely incorrect due to zero observations for most of the item response patterns. To
address this issue, parameter bootstrapping or limited-information indices are used.
However, compared to limited-information statistics, the parameter bootstrapping
approach may be time-consuming and computationally burdensome when the mod-
els are complicated. By using only a small part of the information at hand, researchers
can obtain a limited-information statistic that produces asymptotic p-values that are
accurate even in large models and small samples. For example, Maydeu-Olivares
and Joe (2005) suggested using Mr statistics as in multidimensional IRT models,
where r denotes up to order rth marginal probabilities of the data tables. Previ-
ous research on limited-information statistics has focused on employing limited-
information statistics in models estimated by maximum-likelihood methods. This
study extends limited-information statistics in model checking of Bayesian analysis.

Posterior Predictive Model Checking

In Bayesian analysis, the uncertainty of limited-information fit statistics can be
obtained by summarizing the posterior predictive distribution. The model-checking
procedures using posterior predictive distribution is called posterior predictive model
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checking (PPMC; Gelman & Rubin, 1992). It allows researchers to check local or
global model-data misfit for some aspects of an estimated model. However, one lim-
itation of PPMC approaches is the potential uncertainty of the reference points of
PPMC test statistics (i.e., item means, item pairwise correlations). For example, pos-
terior predictive p-values (PPP-values), one popular method of checking model fit,
can be interpreted as the likelihood of the statistics among potential predictive data
sets implied by the hypothesized model with cutoffs set at.05 and.95. Extreme PPP-
values suggest poor model fit. PPP-values reply on summary statistics obtained from
the observed data as the reference but ignore the uncertainty of the statistics coming
from sampling or measurement errors. Consequently, the precision of PPP-values
could be worse with smaller sample sizes or higher missingness when the observed
statistics do not accurately represent the population parameters.

To overcome this drawback, the empirical distributions instead of summary statis-
tics (e.g., point estimates) can been applied as a reference (Matteucci & Mignani,
2020; Wu et al., 2014). The empirical distribution-based posterior predictive check-
ing method seeks to quantify the distance between the realized and predictive dis-
tributions. However, a challenge arises when applying distance-based PPMC: Since
this approach accounts for the uncertainty of observed data for each specified model,
how does such uncertainty affect the comparison of alternative models? To answer
this question, it is essential to employ the distance-based discrepancy measure to
quantify the degree of overlap between posterior predictive distributions between al-
ternative models. A variety of distance measures have been proposed in the prior
studies, each with specific strengths and limitations. For example, Wu et al. (2014)
proposed the relative entropy of PPMC (RE-PPMC) using Kullback-Leibler (KL)
divergence. Matteucci and Mignani (2020) employed the Hollinger distance with
PPMC to evaluate model fit in IRT. In a recent paper, Zhang et al. (2022) suggested
that the Kolmogorov-Smirnov test (KS-test; Goodman, 1954) has advantages over
other measures regarding accuracy and sensitivity, when used as the distance measure
in model checking for factor analysis. The KS-test method for posterior predictive
distributions demonstrated overall lower Type I error rates in Bayesian confirmatory
factor analysis when detecting local misfit (Zhang et al., 2022), and thus it is a natural
extension for DCMs.

In this study, we focus on applying the KS-test for our proposed model selection
methods. The model-data fitting is defined as the divergence between the posterior
predictive distributions of M2 statistics from an alternative model (also called Model
H0) with those from a referenced BN model (also called Model H1). The proposed
method is detailed in the next section.

KS-PP-M2

The proposed approach, KS-test-based Posterior Predictive Model Checking with
M2 as the summary statistic (KS-PP-M2), employs a BN model as the reference
model and calculates the distance between its goodness-of-fit distribution (e.g., M2
statistics) and the fit distributions for alternative DCMs. Furthermore, the distance
measures between alternative DCMs will be compared, with lower values of dis-
tance measures suggesting better model fit. In this procedure, both goodness-of-fit
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Bayesian PPMC Model Comparison

summary statistics and their uncertainty are considered in the model comparison.
Specifically, the degree of distance between distributions of goodness-of-fit statistics
for alternative DCMs is quantified using distance-based discrepancy measure—KS-
test. The detailed procedure for calculating KS-PP-M2 is as follows.

First, the posterior distributions of parameters for the hypothesized DCM (H0) and
the referenced BN model (H1) were calculated, respectively. The BN model mirrors
the results of all two-way contingency tables with an identical number of parameters
(J + J (J − 1)), where J denotes the number of items.

Second, posterior values of parameters are randomly sampled from the posterior
distribution of parameters of the hypothesized model (H0) as well as the saturated
BN model (H1) to generate predictive data sets: Yrep|θH0 and Yrep|θH1 . Yrep denotes
a set of predictive data sets generated by posteriors draws of parameters θ.

Third, according to the formula from Maydeu-Olivares and Joe (2005), each draw
of the posterior predictive distribution of the M2 statistic with the hypothesized
model (H0) is derived using r̂H0

2 and a weight matrix W2, as follows:

M2,i = N
(
r̂H0

2

)′
W2

(
r̂H0

2

)
, (5)

where r̂H0
2 = π̂H0

2 − π2 denotes up-to bivariate residuals between the posterior pre-
dictive data set (X̃ ) under model H0 and the observed data set (X ), M2,i is ith draw of
posterior predictive limited-information statistic for the model H0, and W2 = I is an
identity matrix. Thus, by iteratively sampling thousands of draws, we can obtain a
posterior predictive distribution of M2 for Model H0, which quantifies the goodness-
of-fit of Model H0 to the observed data and its variation. Similarly, the posterior pre-
dictive distribution of M2 between the saturated model H1 and observed data could
be computed, which is denoted as MH1

2 . It should be noted that in the original M2 for-
mula (Maydeu-Olivares & Joe, 2005), W has a more complicated statistical form for
normalization.1 However, in Bayesian PPMC, normalization is not important since
the goal of the proposed method is not to derive an asymptotic distribution of M2 but
to compare models. Thus, the weight matrix W is fixed to the identity matrix I.

Given posterior distributions of parameters and the M2 formula, the posterior pre-
dictive distribution of MH0

2 and MH1
2 , p(MH0

2 |θH0) and p(MH1
2 |θH1), are calculated

using all values of parameters in the posterior distributions, respectively. θH0 and
θH1 indicate the draws of posterior parameters of the hypothesized model and the
reference model, respectively.

Finally, to quantify model-data fit, the misfit can be measured by the dis-
tance between these two distributions of M2, p(MH0

2 |θH0) and p(MH1
2 |θH1), us-

ing Kolmogorov-Smirnov statistics. The KS statistics measure the distance be-
tween the posterior predictive distribution of M2 from the hypothesized model and
the posterior predictive distribution of M2 from the saturated model as follows:
KS(p(MH0

2 |θH0), p(MH1
2 |θH1)), which can be denoted as KS-PP-M2. A higher value

of KS-PP-M2 indicates a larger distance of M2 estimates between the hypothesized
model and the saturated model, which suggests a worse model fit. A significant KS-
PP-M2 value indicates there is a significant difference between the hypothesized
models with the saturated model in terms of posterior predictive M2 statistics.
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Table 2
Simulation Settings for the Monte Carlo Simulation

Factors Data Generation Data Analysis
Structure

Sample size (N)* Unif(1,000, 2,000)
Correlation of attributes (ρ) .25,.5
Cutting scores (τ)* Unif(–.5,.5)
Test length (J) 30 30
Number of attributes (K) 5 5
Item parameters
Intercepts* Unif(–3, 0)
Main effects* Unif(1.5, 2.5)
Interaction effects* Unif(.5, 1.5)
Models
Fitted model LCDM (Model 1) BN and LCDM (Models 2, 3, 4, 5)
Q-matrix types data-generation Q-matrix 10%, 20% items underspecified

10%, 20% items incorrectly specified

Note: Factors with asterisks are random factors, among which sample size (N) and correlation of attributes
(ρ) are factors of interest, used for generating different conditions of simulated data. In total, there are 100
(N) × 2 (ρ) = 200 conditions in simulation study. For each condition, item parameters and cutting scores
for skill scores are randomly drawn from the distributions above. The cognitive diagnosis index (CDI)
will be computed for each condition to evaluate the measurement quality.

In addition, to evaluate the performance of the proposed method, true-positive
rates (sensitivity) of the proposed method and information criterion were calculated:

TPR = Number of selected model being true model

Total number of model selection
(6)

Simulation Study

To investigate the performance of the proposed KS-PP-M2 method, a Monte Carlo
simulation study was conducted with various design factors. The simulation design
in this study is partially borrowed from Ma (2020) and Liang et al. (2014).

Design

Data generation. Table 2 presents the Monte Carlo simulation settings for data
generation. Simulated data sets were generated based on the LCDM with four fac-
tors manipulated: (1) sample size (N); (2) attribute correlation (ρ); (3) cut scores
for categorizing continuous attribute scores (τ); and (4) item parameters including
intercepts, main effects, and interaction effects (λs). The specific data-generation
process is as follows. First, 200 conditions with different sample size (N) were ran-
domly sampled from U (1, 000, 2, 000). The random sampling of sample size makes
the generated data set more realistic and allows us to examine the tendency of the
proposed indices as sample size increases. Both test length (J) and the number of
attributes (K) are fixed to 30 and 5, respectively, to represent a middle-size data set.
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Bayesian PPMC Model Comparison

Regarding the attribute correlations, low (ρ = .25) and moderate (ρ = .5) attribute
correlation coefficients were used to represent low attribute relation and moderate at-
tribute relation (Kunina-Habenicht et al., 2012). In other words, a correlation matrix
(�) of five skills is a matrix with its diagonal elements as “1”s, and nondiagonal el-
ements as.25 or.5, respectively. Given the attribute correlation matrix �, sample size
N, and number of attributes K , then a latent score matrix � could be generated from
a multivariate normal distribution MV N (0,�). To create categorical latent scores, a
vector of attribute thresholds τ was used to categorize continuous latent scores into
binary responses. Each element of τ was randomly sampled from a uniform distribu-
tion U (−.5, .5). This generation process is consistent with the practical scenario that
each measured skill has its own thresholds in real-world settings. If the latent score
of attribute xk for person i was larger than the threshold τk (xk,i > τk), the mastery
status of person i would be 1, αk,i = 1; otherwise, αk,i = 0. Thus, mastery profiles
for all samples α with size N × K were generated. In total, 200 conditions (100 Ns
× 2 ρs) were generated for the simulation study. Given the estimation complexity
of analysis models, each condition was replicated only once. However, since we ran-
domly sampled levels of sample size and item parameters, the simulation study could
still be generalized to varied real scenarios to some degree.

Finally, item parameters were randomly generated similar to Templin and Hoff-
man (2013)’s LCDM item parameter estimates for the Examination for the Certificate
of Proficiency in English (ECPE) data. To be specific, the item intercept of item i, λi,0

was sampled from a uniform distribution U (−1, 1). The main effects of attribute k on
item i, λi,1,(k), were randomly sampled from a uniform distribution U (1.5, 2.5). The
values of two-way interaction effects of attribute k and k′, λi,2,(k,k′ ), were sampled
from a uniform distribution U (.5, 1.5), and the three-way interaction effect of three
attributes, λi,3,(k,k′,k′′ ), was randomly sample from a uniform distribution U (.5, 1.5).
All data sets were simulated based on parameters λ and mastery status α using R ver.
4.2.1 (R Core Team, 2013).

Cognitive diagnostic index. To examine how the uncertainty of the data-
generation process and sampling error influence the performance of the KS-PP-M2
method, the Cognitive Diagnostic Index (CDI Henson & Douglas, 2005) was calcu-
lated for each condition. The CDI is an alternative to Fisher information in diagnos-
tic classification models. It can be defined as the amount of information the observed
data contain regarding the distributions of latent variables. Specifically, in DCMs,
CDI measures an item’s overall discrimination power and serves as a measure of an
item’s capacity to accurately classify the examinees’ true status (Kuo et al., 2016;
Rupp et al., 2010). Item-level CDIj can be summed over J items to form a test-
level CDI, formulated as CDI = ∑J

j=1 CDIj . Higher test-level CDI suggests a test
possesses more discrimination power to identify the examinees’ unobserved skill
patterns, and vice versa.

Analysis

As shown in Table 3, to investigate the performance of the proposed model selec-
tion approach in choosing the correct Q-matrix that was used for data generation, six
models were analyzed in total for each condition including one reference model (sat-
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Table 3
Analysis Models in the Simulation Study

Model Type Q-Matrix Design

Model 0 Saturated BN Each item measured by all previous items
Model 1 Data generation true Q-matrix
Model 2 Underspecified 10% items underspecified
Model 3 Underspecified 20% items underspecified
Model 4 Incorrectly specified 10% items misspecified
Model 5 Incorrectly specified 20% items misspecified

urated BN), one data-generation model, and four alternative models (Models 2-5).
These alternatives consisted of four permutations of the Q-matrix, with misspeci-
fication of 10% and 20% of items, categorized into two types: (1) 10% and 20%
items incorrectly specifying attributes and (2) 10% and 20% items specifying fewer
attributes than the correct Q-matrix. Thus, in total 200 (conditions) × 6 (models) =
1,200 Bayesian models were estimated in this simulation study.

For each condition, the saturated BN (Model 0) was employed as the reference
model to compute the proposed statistic, KS-PP-M2. Figure S2 presented the di-
rected acyclic graph (DAG) for the 30-item saturated BN model (arrows are hidden
for clarity). That said, item responses in saturated BN were predicted by other items
with the link function as a logistic regression. The sign of the regression coefficients
in the logistic regression represented whether there were positive or negative corre-
lations between the target item (dependent variable) and its previous items (indepen-
dent variables). For example, item 3’s responses were regressed on item 1’s and item
2’s responses.

Figure S3 shows Q-matrices for Models 1-5 with white or grey cells as attributes
required for each item. Items with misspecified entries were colored with grey cells
and dots in the Q-matrix. To be specific, Model 1 is the data-generation model (see
the first plot of Figure S3). Model 2 is an incorrect model with 10% of items un-
derspecifying attribute 1 (see the second plot of Figure S3). Model 3 is an under-
specifying model with 20% of items underspecifying attribute 1 (see the third plot in
Figure S3). Model 4 is an incorrectly specified model with 10% of items misspecify-
ing their attributes (see the forth plot in Figure S3). Model 5 is an incorrectly speci-
fied model with 20% of items misspecifying attributes (see the last plot in Figure S3).
All models were estimated using blatent package (Templin, 2023) in R.

To examine the sensitivity of KS-PP-M2, the average posterior predictive M2
among five analysis models and the reference model (BN model) across all con-
ditions was reported with the hypotheses that (1) the reference model (Model 0) and
the data-generation model (Model 1) have the lowest average posterior predictive
M2 across all conditions; (2) the analysis models with less misspecified entries in Q-
matrix (Models 2 and 4) have lower average posterior predictive M2 than those with
more misspecified entries (Models 3 and 5) across all conditions. Furthermore, to
compare the accuracy of the proposed model-selection approach, summary statistics
and power of KS-PP-M2 and other information criteria (DIC, WAIC, AIC, and BIC)
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Bayesian PPMC Model Comparison

were computed for all models to examine whether the data-generation model was se-
lected based on the lowest values. Finally, the relationship between KS-PP-M2 and
CDI was examined to see if KS-PP-M2 would not be influenced by test information
(or data-generation uncertainty).

Results

Posterior predictive M2. The preliminary analysis suggested that 4,000 itera-
tions in total with the first 1,000 iterations discarded as a burn-in phase were suf-
ficient to achieve model convergence of the BN model and each LCDM. Across
all conditions, the BN model and five LCDMs converged when the Markov chain
Monte Carlo (MCMC) algorithm sampled 4,000 iterations in total including the first
1,000 iterations discarded as burn-ins (Gelman-Rubin convergence diagnostic PSRF
< 1.1).

Figure S4 shows the trend of average posterior predictive M2 (PP-M2) over 100
conditions along with sample size (N) for all models. The results suggested that for
both attribute correlations, average posterior predictive M2 monotonically increased
as sample sizes increased in general (correlation between N and PP-M2 ranged
from.951 to.988 across all conditions). Furthermore, the BN models had the over-
all lowest average posterior predictive M2 followed by Model 1 (the data-generation
model). In contrast, Model 3 (20% items specify fewer attributes) had the highest
average posterior predictive M2 than other models in all conditions. Model 2 (10%
items underspecified) had lower average PP-M2 than Model 3 (20% items under-
specified), and Model 4 (10% items incorrectly specified attributes) tended to have
lower PP-M2 than Model 5 (20% items incorrectly specified attributes). Even though
the results of average PP-M2 values offered insights into Q-matrix misspecification,
they were easily influenced by sample size and failed to account for the uncertainty
of M2. Thus, to enhance the accuracy in model selection, we examined KS-PP-M2
as a goodness-of-fit index for a more accurate comparison of models.

KS-PP-M2. Comparing KS-PP-M2 to other information criteria, the true-positive
rates (TPR) for all fit measures were 100% (in other words, Type I error rates were
0%). Figure S6 presents the means and ranges among KS-PP-M2 and other normal-
ized information criteria for Models 1-5 across all replications. It suggested that the
distance of model fitting between Model 1 (the data-generation model) and other
models (models with misspecified Q-matrices) was larger for KS-PP-M2 than for in-
formation criteria. In addition, the variation of KS-PP-M2 across simulated data sets
for all analysis models was much smaller than that for information criteria.

Table 4 reported summary statistics of the KS-PP-M2 and information criteria
(IC) for analysis models by various factor correlations. Consistent with the results of
information criteria, the data-generation models (Model 1) for both levels of factor
correlations had average lower posterior predictive M2 with Mρ=.25(SD) as.18(.04)
and Mρ=.50(SD) as.33(.11), which suggested Model 1 having the best model fit than
other models. Comparing average values of fit indices across models, all fit indices
were able to detect the misspecification of Q-matrix indicated by higher values of
Models 2-5. For the relationship between factor correlation and model fitting, all
models have worse model fits suggested by larger values of fit indices as the fac-
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Bayesian PPMC Model Comparison

tor correlation increased. However, controlling the factor correlation, KS-PP-M2 fa-
vored models with incorrectly specified attributes (Models 4 and 5) more than those
with underspecified attributes (Models 2 and 3), while other fit indices favored mod-
els with underspecified attributes (Models 2 and 3) more than those with incorrectly
specified attributes (Models 4 and 5).

The relation between CDI with KS-PP-M2. To examine whether test informa-
tion affects the proposed KS-PP-M2, test-level CDIs were calculated for all sim-
ulated data across all conditions with Mean(SD) as 85.3(4.79) for ρ = .25 and
85.5(4.35) for ρ = .50. Figure S5 displays the fitted regression lines of KS-PP-M2
for different models across various CDIs. It shows a weak association between CDI
and KS-PP-M2 since KS-PP-M2 for each model fluctuated randomly along differ-
ent levels of CDI. Moreover, Table S1 shows the results of the regression analy-
sis on the KS-PP-M2 with CDI as a predictor, conditional on the model types, in
which CDIc denotes the mean-centered CDI values. The results suggested that the
main effect of CDIc on PP-KS-M2 was.00 with p = .82, implying that the variation
of test information did not have a significant effect on KS-PP-M2 values (βCDIc =
.00, p = .82) controlling for model types. The interaction effects of CDIc and mod-
els (CDIc: Model 2, CDIc: Model 3, CDIc: Model 4, and CDIc: Model 5) exhib-
ited nonsignificant effects (βCDIc:Model2 = .00, p = .93; βCDIc:Model3 = .00, p = .59;
βCDIc:Model4 = .00, p = .97; βCDIc:Model4 = .00, p = .71), which suggested that the
slopes of test information were not significantly different between data-generation
model (Model 1) and incorrect models (Models 2-5). Since the values of KS-PP-M2
represented the goodness-of-fit of different models, the regression analysis revealed
that CDI did not significantly affect the performance of KS-PP-M2 in choosing the
correct Q-matrix in the simulation settings.

Empirical Study

Design

In the empirical study, the KS-PP-M2 approach was used for the model selection
with the Examination for Certificate of Proficiency in English (ECPE) data (Templin
and Bradshaw, 2014). The main purpose of this empirical study is to demonstrate an
application of employing KS-PP-M2 for model comparison in a real-world scenario.
As characteristics of data sets differ across analyses, this study should not be consid-
ered a comprehensive study of the usefulness of the KS-PP-M2 method for various
conditions, but as an illustration of the procedures for assessing model fit based on
KS-PP-M2. The ECPE data has been well investigated with various model structures
by prior studies (e.g., Templin & Hoffman, 2013; Templin and Bradshaw, 2014). For
instance, Templin and Hoffman (2013) estimated the LCDM with the data and found
that the three-dimensional model fitted better than other models according to AIC.
The correlation among the three attributes ranges from.79 to.81, suggesting that the
skills are, though highly correlated, differentiable from each other to some degree.
Templin & Bradshaw (2014) further found that an attribute hierarchical structure was
present: Examinees must master lexical rules before mastering cohesive rules, and
must master cohesive rules before mastering morphosyntactic rules.
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Zhang et al.

Data

The ECPE is a test developed and scored by the English Language Institute at
the University of Michigan. The test measures advanced English skills in examinees
whose primary language is not English and is administered internationally once a
year between November and April, depending on the location (Templin & Hoffman,
2013).

Compared to the original data, the example data is restricted to the grammar sec-
tion, including 28 multiple-choice questions, and 2,922 test takers from a single
year’s administration. According to prior literature (e.g., Templin & Hoffman, 2013),
the ECPE contains three skills: (1) morphosyntactic rules, (2) cohesive rules, and (3)
lexical rules (see Buck & Tatsuoka, 1998; Henson et al., 2008). Please refer to Tem-
plin and Hoffman (2013) for more detailed information on the example data, such as
the observed scores and example items. The ECPE data is publicly available in the
CDM package in R (Ravand & Robitzsch, 2015).

Analysis

In the empirical study, three analysis models and one saturated model (BN) will be
presented: (1) Model 1: the three-dimensional model used by Templin and Hoffman
(2013); (2) Model 2: a two-dimensional model with an arbitrary Q-matrix, (3) Model
3: a unidimensional model with a one-column Q-matrix, and (4) the saturated BN
model. The aim of applying Models 1, 2, and 3 to ECPE is to examine whether
dimensionality affects the performance of model fit indices and to check whether the
results of KS-PP-M2 were consistent with the previous study (Templin & Hoffman,
2013).

Please refer to Templin and Hoffman (2013) for the specification of Model 1.
Model 2 was specified as follows: the first 14 items measure attribute 1 (α1) and the
last 14 items measure attribute 2 (α2). Model 3 was specified as all 28 items measur-
ing attribute 1 (α1). To examine the proposed method, we performed graphical check-
ing of the posterior predictive distributions of M2, and calculated the KS-PP-M2,
WAIC, and DIC for the analysis models. Specifically, we can examine model fitting
by visually inspecting the posterior predictive distribution of M2 for the Bayesian
Network model and the specified models. The one closer to zero suggests a better
model fit. Alternatively, lower values of KS-PP-M2, WAIC, and DIC suggest better
model fit. R codes for data analysis have been shared on the Open Science Frame-
work (OSF) and can be accessed via https://osf.io/8HAVF/.

Results

According to convergence diagnostics, all models converged after 2,000 iterations
with the first 1,000 iterations treated as burn-ins. The maximum PSRF across three
chains ≤ 1.01 suggested that all models converged.

Figure 1 shows the posterior predictive distribution of M2 values for the satu-
rated model (Bayesian Network) and three analysis models (Models 1-3). The re-
sults suggested that the Bayesian Network model (solid line; M = 1.31, SD = .315)
had the lowest average posterior predictive M2 values followed by Model 3—
unidimensional model (dotdash line; M = 2.22, SD = .355), and Model 1—three-
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Figure 1. Posterior predictive distribution of M2 for three analysis models for the ECPE data
in the empirical study.
Note: The solid line is the Bayesian Network model; the dotted line is Model 1
(three-dimensional model); the dashed line is Model 2 (two-dimensional model); the
dotdashed line is Model 3 (unidimensional model). 500 posterior predictive values are
sampled for each model.

Table 5
KS-PP-M2 and Information Criteria for Analysis Models

KS-PP-M2 DIC WAIC AIC BIC

Model 1 .980*** 86144.46 86162.92 86173 86663.37
Model 2 .994*** 86485.48 86486.92 86486.49 86845.29
Model 3 .840*** 86060.35 86061.67 86063.37 86410.21

Note: ***p < .001.

dimensional model (dotted line; M = 2.99, SD = .424). The worst fitted model was
Model 2—two-dimensional model (dashed line; M = 3.51, SD = .425). Although
none of the three analysis models highly overlaps with the Bayesian Network model
regarding posterior predictive M2 values, Model 3 shows a shorter distance with the
Bayesian Network model than other models.

Table 5 presents the results of KS-PP-M2, DIC, WAIC, AIC, and BIC for Models
1-3. Comparing the fit among these models, Models 1 and 2 yielded higher fit val-
ues indicating less representative of the “true” structure of the ECPE data, but the
unidimensional attribute structure measured by Model 3 fitted better to the ECPE
data, suggesting that the model fit indices were not inflated by model complexity
with additional dimensions. Inconsistent with the findings from Templin and Hoff-
man (2013), all model selection methods suggested that Model 3 (unidimensional
model) exhibited the best model fit than other models, followed by Model 1 (three-
dimensional model). The results of KS-PP-M2 aligned with the results of informa-
tion criteria (AIC, BIC, WAIC, and DIC).
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Zhang et al.

It is worth noting that DIC, WAIC, AIC, and BIC as shown in Table 5 did not
provide any information regarding the model goodness-of-fit but for model compari-
son. Instead, KS-PP-M2 of Models 1-3 rejected the null hypothesis that the specified
model had an equivalent fit to the saturated BN model, suggesting that these analysis
models and the BN model were not likely to have the same shape of distributions of
posterior predictive M2 statistics.

Discussion

This study proposes a novel model fit statistic for Bayesian diagnostic classifica-
tion modeling, namely KS-PP-MC, based on Bayesian Network, posterior predictive
model checking, KS-test, and the M2 statistic. This fully Bayesian statistic facilitates
visual inspection for model comparison. Moreover, it accounts for the uncertainty in-
formation inherent in the posterior predictive distribution by quantifying the distance
between the posterior predictive M2 of the analysis model and that of the saturated
model. A Monte Carlo simulation study was conducted to explore the impact of var-
ious design factors (factor correlation, sample size, and Q-matrix misspecification)
on the performance of KS-PP-M2. Additionally, this study examined the sensitivity
of KS-PP-M2 in detecting different levels of Q-matrix misspecification compared to
commonly used information criteria. An empirical study utilizing ECPE data demon-
strated the application of KS-PP-M2 to real data and its ability to detect misspeci-
fications in dimensionality. Overall, KS-PP-M2 exhibited stable power in detecting
model misspecifications arising from the Q-matrix and dimensionality under diverse
conditions. The interpretations of results, practical implications, and strengths and
limitations of KS-PP-M2 are discussed below according to findings from both the
simulation and empirical studies.

RQ1: Is KS-PP-M2 an Appropriate Approach for Detecting the Model-Data
Misfit with Various Degrees of Q-Matrix Misspecification?

As depicted in Figure S4, the saturated model (BN) and the data generation model
(Model 1) exhibited lower posterior predictive M2 values than the LCDMs with in-
correctly specified Q-matrices (Models 2-5). This indicates that the distributions of
posterior predictive M2 could serve as a criterion for selecting the correct Q-matrix.
Further analysis, as shown in Table 4 and Figure S6, revealed that models with mis-
specified Q-matrices consistently had higher average KS-PP-M2 values. Moreover,
increased levels of Q-matrix misspecification were associated with higher KS-PP-
M2 values. For instance, for the factor correlation as.25, the average KS-PP-M2
value for Model 2, with 10% of items underspecified, was.66, whereas for Model
3, with 20% of items underspecified, it was.83. Similarly, the average KS-PP-M2
value for Model 3, with 10% of items incorrectly specified, was.60, whereas for
Model 3, with 20% of items incorrectly misspecified, it was.70. Compared to weak
factor correlation, medium factor correlation (ρ = .50) yielded a worse model fit for
all analysis models.

Similarly, evidence from the empirical study, as illustrated in Figure 1, supported
the proposed method’s ability to accurately identify the unidimensional model as the
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best-fitting model. This finding is aligned with the findings from information criteria
but deviates from previous literature (Templin & Hoffman, 2013).

In summary, the PP-M2 method effectively distinguished between correct and in-
correct models across varying levels of Q-matrix misspecification. Building upon
PP-M2, the KS-PP-M2 method refines the approach by taking into account the un-
certainty of posterior distributions, offering a more effective means for selecting the
appropriate Q-matrix.

RQ2: Compared to Other Information Criteria, Does the Proposed Approach
Have Better Performance When Selecting the Correct Model?

PP-M2 can be used to detect model misfit but was strongly influenced by sample
size. By performing the KS-test on PP-M2, the KS-PP-M2 approach demonstrated at
least equivalent power of choosing the correct Q-matrix compared to information cri-
teria according to true-positive rates. Moreover, for both levels of factor correlations,
as shown in Figure S6, KS-PP-M2 has relatively lower variation and higher sen-
sitivity to model misspecification than other normalized information criteria across
various replications. In the empirical study, both KS-PP-M2 and information criteria
selected the unidimensional model as the best-fitting model, suggesting that KS-PP-
M2 did not overestimate the model fit due to the increased number of parameters
associated with multidimensionality.

RQ3: How Does the Information of Observed Data Affect the Performance of
the Proposed Method?

As shown in Table S1 and Figure S5, test information indices by the cognitive
diagnostic index have no statistically significant effects on either KS-PP-M2 of the
data-generation models or the difference of KS-PP-M2 between the data-generation
model and the model with a misspecified Q-matrix. That is, in all simulated condi-
tions, the uncertainty of classifying respondents or the information contained in data
did not affect the power of the proposed method in selecting the correct model.

Advantages

In summary, the proposed KS-PP-M2 method has the following advantages. First,
the KS-PP-M2 method can compare alternative models to select the best-fitting
model among competitors taking the uncertainty of posterior prediction distributions
into account. The saturated BN model as the reference model contains the uncer-
tainty coming from data (i.e., sampling error) and may be more theoretically valid
than a point estimate derived from observed statistics that is assumed to be true. In
the future, it would be helpful to derive cut-off scores for KS-PP-M2 as an absolute
model fit method for the model goodness-of-fit evaluation. A comprehensive power
analysis of KS-PP-M2 aiming to determine cutoffs under various conditions may be
a valuable direction in the future.

Second, the KS-PP-M2 approach takes the uncertainty of observed data into ac-
count when quantifying model-data fit, which increases the precision of the model-
data checking process. Ignoring the uncertainty of fit statistics potentially leads to
the low accuracy problem of model-data fit indices under the conditions of small
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sample sizes or high missing rate (e.g., Asparouhov & Muthén, 2020; Winter &
Depaoli, 2022). For example, Asparouhov and Muthén (2020) found that Bayesian
approximate fit indices failed for small sample sizes in some situations. The pre-
vious study relies on rules of thumb or confidence limits of the fit indices of the
maximum-likelihood estimator. In this study, similar to Asparouhov and Muthén
(2020)’s model fit evaluation in structural equation modeling, the proposed approach
using the Bayesian Network model can be easily generalized to missing data situa-
tions by generating replicated data under the Bayesian Network model so that they
have the same amount of missing data as the real data set.

Third, the KS-PP-M2 does not require likelihood-based statistics for computation,
thus it could be generalized to approximation modeling such as variational Bayes
(VB) with intractable likelihoods (e.g., Tran et al., 2016) or neural network models
(e.g., Lenzi et al., 2021). This feature could be very useful when conducting large-
scale data analyses and complex modeling, in which the likelihood function is either
difficult to calculate or intractable. Information criteria such as AIC, BIC, DIC, and
related criteria have different target quantities. For example, the motivation for the
use of the BIC is comparing probabilities for each of the models under considera-
tion. Their performance varies depending on their assumptions, analysis models, and
observed data sets. In comparison with information criteria, the KS-PP-M2 method
does not assume each model under consideration is the true model. Instead, its mo-
tivation is to quantify the degree to which the prediction accuracy of each model
under consideration matches a saturated model, whatever the true data-generation
process is.

Last, the proposed approach takes advantage of limited-information statistics,
which have been shown to perform better in highly sparse data using both frequentist
estimation (e.g., Maydeu-Olivares & Joe, 2008; Ma, 2020; Maydeu-Olivares & Joe,
2005; Ranger & Kuhn, 2012) and Bayesian estimation (e.g., Maydeu-Olivares et al.,
2018; Sinharay, 2005; Stone & Zhang, 2003). Further research is needed to test the
performance of KS-PP-M2 under high amounts of sparseness.

Future Directions and Limitations

Some disadvantages exist when applying the proposed KS-PP-M2 method in real
settings. First, the limited-information M2 statistics used in this study do not contain
a weight matrix for residuals, which makes the values of M2 not follow an asymptotic
distribution. Compared to the original M2 statistics developed by Maydeu-Olivares
and Joe (2005), posterior predictive M2 values used in this study are not easy to in-
terpret without the KS test. In the future, more investigation is needed to compare the
performance of various limited-information discrepancy measures in Bayesian esti-
mation.

Second, the KS-PP-M2 method requires estimating a saturated BN model before-
hand, which could be computationally burdensome when the analyzed model con-
tains a large number of parameters or when the data have a large sample size. One
potential solution is replacing Bayesian estimation with variational Bayes (VB) esti-
mation for the Bayesian Network model. For instance, Yamaguchi and Okada (2020)
demonstrated that the computational time required for the VB inference for the DINA
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Bayesian PPMC Model Comparison

model was about 1.28 seconds using a laptop with a 3.1 GHz processor and 16 GB
of memory. In contrast, MCMC estimation required about 600 seconds for one chain
to converge in the same computational environment.

Third, recently the leave-one-out cross-validation (LOO-CV) based model fitting
technique is getting more attention (Kuh et al., 2022), but the present study does
not include these relative fit indices for model comparison except for WAIC. This
is because, to our knowledge, the performance of LOO with Pareto smoothed im-
portance sampling (LOO-PSIS; Vehtari et al., 2017) in Bayesian diagnostic clas-
sification modeling has not been well investigated yet. In addition, currently only
Stan (Stan Development Team, 2020) supports this kind of fit indices. Research on
comparing the performance of LOO-PSIS, IC and KS-PP-M2 in BDCM selection is
needed in the future.

Last, although the proposed KS-PP-M2 method is relatively more stable across
various conditions than other model fit indices, the proposed method is not differ-
ent from other methods regarding true-positive rates. The possible explanation is the
model checking methods have the ceiling effect with the current relatively straight-
forward simulation setting (i.e., 30-item test with five attributes measured). One pos-
sible direction could be testing more complicated diagnostic classification models
with more design factors, such as higher attribute correlations, more latent attributes,
and longer test lengths.

Note
1W = �−1

2 − �−1
2 �2

(
�′

2�
−1
2 �2

)−1
�′

2�
−1
2 . �2 is the sample varaince-

covaraince matrix of up-to second-order marginal probabilities. � denotes derivation
of likelihood function along parameters.
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