This Blog is the notes for my recent project about reliability and model checking. Next I want to organize a little about one important concept in model checking - discrepancy measures.
1 Descrepancy Measures
χ2 measures for item-pairs (Chen & Thissen, 1997) Xjj′2=k=0∑1k′=0∑1E(nkk′)(nkk′−E(nkk′))2
Q3 (Yen, 1993) Q3jj′=reijeij′ where r refers to the correlation, eij=Xij−E(Xij), and E(Xij)
Residual Item Covariance (Fu et al., 2005) RESIDCOVjj′=N2[(n11)(n00)−(n10)(n01)]−E(N2)[E(n11)E(n00)−E(n10)E(n01)]
natural log of the odds ratio (Agresti, 2002) LN(ORjj′)=ln[(n10)(n01)(n11)(n00)]=ln(n11)+ln(n00)+ln(n10)+ln(n01)
standardized log odds ratio residual (Chen & Thissen, 1997) STDLN(ORjj′)−RESID=n111+n101+n011+n001ln[n10n01n11n00]−ln[E(n10)E(n01)E(n11)E(n00)]
Mantel-Haenszel statistic (MH; Agresti, 2002; Sinharay et al., 2006) MHjj′=∑rn10rn01r/nr∑rn11rn00r/nr where counts of examinees with a response pattern are conditional on rest score r, defined as the total test score excluding items j and j’.
---title: Introduce Descrepancy Measures author: Jihongdate: '2018-09-11'slug: model-checking-in-dcmcategories: - Rtags: - DCM - Routput: blogdown::html_page: toc: true---> This Blog is the notes for my recent project about reliability and model checking. Next I want to organize a little about one important concept in model checking - discrepancy measures. # Descrepancy Measures1. $\chi^2$ measures for item-pairs (Chen & Thissen, 1997) $$ X^2_{jj'}=\sum_{k=0}^{1} \sum_{k'=0}^{1} \frac{(n_{kk'}-E(n_{kk'}))^2}{E(n_{kk'})} $$2. $G^2$ for item pairs $$ G^2_{jj'}=-2\sum_{k=0}^{1} \sum_{k'=0}^{1} \ln \frac{E(n_{kk'})}{n_{kk'}} $$3. model-based covariance (MBC; Reckase, 1997) $$ COV_{jj'} = \frac{\sum_{i=1}^{N}(X_{ij}-\overline{X_j})(X_{ij'}-\overline{X_{j'}}) }{N} \\ MBC_{jj'} = \frac{\sum_{i=1}^{N}(X_{ij}-E(X_{ij}))(X_{ij'}-E(X_{ij'}))}{N} $$4. $Q_3$ (Yen, 1993) $$ Q_{3jj'} = r_{e_{ij}e_{ij'}} $$ where $r$ refers to the correlation, $e_{ij} = X_{ij} - E(X_{ij})$, and $E(X_{ij})$5. Residual Item Covariance (Fu et al., 2005) $$ RESIDCOV_{jj'} = \frac{[(n_{11})(n_{00})-(n{10})(n_{01})]}{N^2} - \frac{[E(n_{11})E(n_{00})-E(n_{10})E(n_{01})]}{E(N^2)} $$6. natural log of the odds ratio (Agresti, 2002) $$ LN(OR_{jj'})= \ln[\frac{(n_{11})(n_{00})}{(n_{10})(n_{01})}] = \ln(n_{11}) +\ln(n_{00})+\ln(n_{10}) +\ln(n_{01}) $$7. standardized log odds ratio residual (Chen & Thissen, 1997) $$ STDLN(OR_{jj'})-RESID = \frac {\ln[\frac{n_{11}n_{00}}{n_{10}n_{01}}]-\ln[\frac{E(n_{11})E(n_{00})}{E(n_{10})E(n_{01})}]} {\sqrt{\frac{1}{n_{11}}+\frac{1}{n_{10}}+\frac{1}{n_{01}}+\frac{1}{n_{00}}}} $$8. Mantel-Haenszel statistic (MH; Agresti, 2002; Sinharay et al., 2006) $$ MH_{jj'} = \frac{\sum_rn_{11r}n_{00r}/n_r}{\sum_rn_{10r}n_{01r}/n_r} $$ where counts of examinees with a response pattern are conditional on rest score r, defined as the total test score excluding items j and j'.