Introduce Descrepancy Measures

Author

Jihong

Published

September 11, 2018

This Blog is the notes for my recent project about reliability and model checking. Next I want to organize a little about one important concept in model checking - discrepancy measures.

1 Descrepancy Measures

  1. χ2\chi^2 measures for item-pairs (Chen & Thissen, 1997) Xjj2=k=01k=01(nkkE(nkk))2E(nkk) X^2_{jj'}=\sum_{k=0}^{1} \sum_{k'=0}^{1} \frac{(n_{kk'}-E(n_{kk'}))^2}{E(n_{kk'})}

  2. G2G^2 for item pairs

    Gjj2=2k=01k=01lnE(nkk)nkk G^2_{jj'}=-2\sum_{k=0}^{1} \sum_{k'=0}^{1} \ln \frac{E(n_{kk'})}{n_{kk'}}

  3. model-based covariance (MBC; Reckase, 1997) COVjj=i=1N(XijXj)(XijXj)NMBCjj=i=1N(XijE(Xij))(XijE(Xij))N COV_{jj'} = \frac{\sum_{i=1}^{N}(X_{ij}-\overline{X_j})(X_{ij'}-\overline{X_{j'}}) }{N} \\ MBC_{jj'} = \frac{\sum_{i=1}^{N}(X_{ij}-E(X_{ij}))(X_{ij'}-E(X_{ij'}))}{N}

  4. Q3Q_3 (Yen, 1993) Q3jj=reijeij Q_{3jj'} = r_{e_{ij}e_{ij'}} where rr refers to the correlation, eij=XijE(Xij)e_{ij} = X_{ij} - E(X_{ij}), and E(Xij)E(X_{ij})

  5. Residual Item Covariance (Fu et al., 2005) RESIDCOVjj=[(n11)(n00)(n10)(n01)]N2[E(n11)E(n00)E(n10)E(n01)]E(N2) RESIDCOV_{jj'} = \frac{[(n_{11})(n_{00})-(n{10})(n_{01})]}{N^2} - \frac{[E(n_{11})E(n_{00})-E(n_{10})E(n_{01})]}{E(N^2)}

  6. natural log of the odds ratio (Agresti, 2002) LN(ORjj)=ln[(n11)(n00)(n10)(n01)]=ln(n11)+ln(n00)+ln(n10)+ln(n01) LN(OR_{jj'})= \ln[\frac{(n_{11})(n_{00})}{(n_{10})(n_{01})}] = \ln(n_{11}) +\ln(n_{00})+\ln(n_{10}) +\ln(n_{01})

  7. standardized log odds ratio residual (Chen & Thissen, 1997) STDLN(ORjj)RESID=ln[n11n00n10n01]ln[E(n11)E(n00)E(n10)E(n01)]1n11+1n10+1n01+1n00 STDLN(OR_{jj'})-RESID = \frac {\ln[\frac{n_{11}n_{00}}{n_{10}n_{01}}]-\ln[\frac{E(n_{11})E(n_{00})}{E(n_{10})E(n_{01})}]} {\sqrt{\frac{1}{n_{11}}+\frac{1}{n_{10}}+\frac{1}{n_{01}}+\frac{1}{n_{00}}}}

  8. Mantel-Haenszel statistic (MH; Agresti, 2002; Sinharay et al., 2006) MHjj=rn11rn00r/nrrn10rn01r/nr MH_{jj'} = \frac{\sum_rn_{11r}n_{00r}/n_r}{\sum_rn_{10r}n_{01r}/n_r} where counts of examinees with a response pattern are conditional on rest score r, defined as the total test score excluding items j and j’.

Back to top